manu commited on
Commit
0d01d71
β€’
1 Parent(s): b5297f4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -32
app.py CHANGED
@@ -2,20 +2,22 @@ import os
2
 
3
  import gradio as gr
4
  import torch
 
 
 
 
 
 
 
5
  from pdf2image import convert_from_path
6
  from PIL import Image
7
  from torch.utils.data import DataLoader
8
  from tqdm import tqdm
9
  from transformers import AutoProcessor
10
- import spaces
11
-
12
- from colpali_engine.models.paligemma_colbert_architecture import ColPali
13
- from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
14
- from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
15
 
16
 
17
  @spaces.GPU
18
- def search(query: str, ds, images):
19
  qs = []
20
  with torch.no_grad():
21
  batch_query = process_queries(processor, [query], mock_image)
@@ -23,20 +25,28 @@ def search(query: str, ds, images):
23
  embeddings_query = model(**batch_query)
24
  qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
25
 
26
- # run evaluation
27
  retriever_evaluator = CustomEvaluator(is_multi_vector=True)
28
  scores = retriever_evaluator.evaluate(qs, ds)
29
- best_page = int(scores.argmax(axis=1).item())
30
- return f"The most relevant page is {best_page}", images[best_page]
 
 
 
 
 
 
31
 
32
 
33
  @spaces.GPU
34
- def index(file, ds):
35
  """Example script to run inference with ColPali"""
36
  images = []
37
- for f in file:
38
  images.extend(convert_from_path(f))
39
 
 
 
 
40
  # run inference - docs
41
  dataloader = DataLoader(
42
  images,
@@ -51,41 +61,48 @@ def index(file, ds):
51
  ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
52
  return f"Uploaded and converted {len(images)} pages", ds, images
53
 
54
-
55
- COLORS = ["#4285f4", "#db4437", "#f4b400", "#0f9d58", "#e48ef1"]
56
  # Load model
57
  model_name = "vidore/colpali"
58
  token = os.environ.get("HF_TOKEN")
59
  model = ColPali.from_pretrained(
60
- "google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token=token
61
- ).eval()
62
  model.load_adapter(model_name)
63
- processor = AutoProcessor.from_pretrained(model_name, token=token)
 
64
  device = model.device
 
65
  mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
66
 
67
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
68
- gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models πŸ“šπŸ”")
69
- gr.Markdown("## 1️⃣ Upload PDFs")
70
- file = gr.File(file_types=["pdf"], file_count="multiple")
71
 
72
- gr.Markdown("## 2️⃣ Convert the PDFs and upload")
73
- convert_button = gr.Button("πŸ”„ Convert and upload")
74
- message = gr.Textbox("Files not yet uploaded")
75
- embeds = gr.State(value=[])
76
- imgs = gr.State(value=[])
77
 
78
- # Define the actions
79
- convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
 
 
 
 
80
 
81
- gr.Markdown("## 3️⃣ Search")
82
- query = gr.Textbox(placeholder="Enter your query here")
83
- search_button = gr.Button("πŸ” Search")
84
- message2 = gr.Textbox("Query not yet set")
85
- output_img = gr.Image()
86
 
87
- search_button.click(search, inputs=[query, embeds, imgs], outputs=[message2, output_img])
 
 
 
88
 
 
 
 
 
 
 
89
 
90
  if __name__ == "__main__":
91
  demo.queue(max_size=10).launch(debug=True)
 
2
 
3
  import gradio as gr
4
  import torch
5
+ from colpali_engine.models.paligemma_colbert_architecture import ColPali
6
+ from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
7
+ from colpali_engine.utils.colpali_processing_utils import (
8
+ process_images,
9
+ process_queries,
10
+ )
11
+ import spaces
12
  from pdf2image import convert_from_path
13
  from PIL import Image
14
  from torch.utils.data import DataLoader
15
  from tqdm import tqdm
16
  from transformers import AutoProcessor
 
 
 
 
 
17
 
18
 
19
  @spaces.GPU
20
+ def search(query: str, ds, images, k):
21
  qs = []
22
  with torch.no_grad():
23
  batch_query = process_queries(processor, [query], mock_image)
 
25
  embeddings_query = model(**batch_query)
26
  qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
27
 
 
28
  retriever_evaluator = CustomEvaluator(is_multi_vector=True)
29
  scores = retriever_evaluator.evaluate(qs, ds)
30
+
31
+ top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
32
+
33
+ results = []
34
+ for idx in top_k_indices:
35
+ results.append((images[idx], f"Page {idx}"))
36
+
37
+ return results
38
 
39
 
40
  @spaces.GPU
41
+ def index(files, ds):
42
  """Example script to run inference with ColPali"""
43
  images = []
44
+ for f in files:
45
  images.extend(convert_from_path(f))
46
 
47
+ if len(images) >= 150:
48
+ raise gr.Error("The number of images in the dataset should be less than 150.")
49
+
50
  # run inference - docs
51
  dataloader = DataLoader(
52
  images,
 
61
  ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
62
  return f"Uploaded and converted {len(images)} pages", ds, images
63
 
 
 
64
  # Load model
65
  model_name = "vidore/colpali"
66
  token = os.environ.get("HF_TOKEN")
67
  model = ColPali.from_pretrained(
68
+ "google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()
69
+
70
  model.load_adapter(model_name)
71
+ processor = AutoProcessor.from_pretrained(model_name, cache_dir=cache_dir, token = token)
72
+
73
  device = model.device
74
+
75
  mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
76
 
77
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
78
+ gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models πŸ“š")
79
+ gr.Markdown("""Demo to test ColPali on PDF documents. The inference code is based on the [ViDoRe benchmark](https://github.com/illuin-tech/vidore-benchmark).
 
80
 
81
+ ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449).
 
 
 
 
82
 
83
+ This demo allows you to upload PDF files and search for the most relevant pages based on your query.
84
+ """)
85
+ with gr.Row():
86
+ with gr.Column(scale=2):
87
+ gr.Markdown("## 1️⃣ Upload PDFs")
88
+ file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")
89
 
90
+ convert_button = gr.Button("πŸ”„ Convert and upload")
91
+ message = gr.Textbox("Files not yet uploaded", label="Status")
92
+ embeds = gr.State(value=[])
93
+ imgs = gr.State(value=[])
 
94
 
95
+ with gr.Column(scale=3):
96
+ gr.Markdown("## 2️⃣ Search")
97
+ query = gr.Textbox(placeholder="Enter your query here", label="Query")
98
+ k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=3)
99
 
100
+ # Define the actions
101
+ search_button = gr.Button("πŸ” Search", variant="primary")
102
+ output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
103
+
104
+ convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
105
+ search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
106
 
107
  if __name__ == "__main__":
108
  demo.queue(max_size=10).launch(debug=True)