Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
4 |
-
from pdf2image import convert_from_path
|
5 |
-
|
6 |
import torch
|
|
|
7 |
from PIL import Image
|
8 |
from torch.utils.data import DataLoader
|
9 |
from tqdm import tqdm
|
@@ -60,7 +59,7 @@ def search(query: str, ds, images):
|
|
60 |
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
61 |
scores = retriever_evaluator.evaluate(qs, ds)
|
62 |
best_page = int(scores.argmax(axis=1).item())
|
63 |
-
return f"The most relevant page is {best_page}",
|
64 |
|
65 |
|
66 |
def index(file, ds):
|
@@ -84,18 +83,20 @@ def index(file, ds):
|
|
84 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
85 |
|
86 |
|
87 |
-
COLORS = [
|
88 |
# Load model
|
89 |
model_name = "coldoc/colpali-3b-mix-448"
|
90 |
token = os.environ.get("HF_TOKEN")
|
91 |
-
model = ColPali.from_pretrained(
|
|
|
|
|
92 |
model.load_adapter(model_name)
|
93 |
processor = AutoProcessor.from_pretrained(model_name, token=token)
|
94 |
device = model.device
|
95 |
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
96 |
|
97 |
with gr.Blocks() as demo:
|
98 |
-
gr.Markdown("#
|
99 |
gr.Markdown("## 1οΈβ£ Upload PDFs")
|
100 |
file = gr.File(file_types=["pdf"], file_count="multiple")
|
101 |
|
@@ -103,14 +104,10 @@ with gr.Blocks() as demo:
|
|
103 |
convert_button = gr.Button("π Convert and upload")
|
104 |
message = gr.Textbox("Files not yet uploaded")
|
105 |
embeds = gr.State(value=[])
|
106 |
-
imgs = gr.State()
|
107 |
|
108 |
# Define the actions
|
109 |
-
convert_button.click(
|
110 |
-
index,
|
111 |
-
inputs=[file, embeds],
|
112 |
-
outputs=[message, embeds, imgs]
|
113 |
-
)
|
114 |
|
115 |
gr.Markdown("## 3οΈβ£ Search")
|
116 |
query = gr.Textbox(placeholder="Enter your query here")
|
@@ -118,11 +115,8 @@ with gr.Blocks() as demo:
|
|
118 |
message2 = gr.Textbox("Query not yet set")
|
119 |
output_img = gr.Image()
|
120 |
|
121 |
-
search_button.click(
|
122 |
-
search, inputs=[query, embeds, imgs],
|
123 |
-
outputs=[message2, output_img]
|
124 |
-
)
|
125 |
|
126 |
|
127 |
if __name__ == "__main__":
|
128 |
-
demo.queue(max_size=10).launch(debug=True)
|
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
|
|
|
|
4 |
import torch
|
5 |
+
from pdf2image import convert_from_path
|
6 |
from PIL import Image
|
7 |
from torch.utils.data import DataLoader
|
8 |
from tqdm import tqdm
|
|
|
59 |
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
60 |
scores = retriever_evaluator.evaluate(qs, ds)
|
61 |
best_page = int(scores.argmax(axis=1).item())
|
62 |
+
return f"The most relevant page is {best_page}", images[best_page]
|
63 |
|
64 |
|
65 |
def index(file, ds):
|
|
|
83 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
84 |
|
85 |
|
86 |
+
COLORS = ["#4285f4", "#db4437", "#f4b400", "#0f9d58", "#e48ef1"]
|
87 |
# Load model
|
88 |
model_name = "coldoc/colpali-3b-mix-448"
|
89 |
token = os.environ.get("HF_TOKEN")
|
90 |
+
model = ColPali.from_pretrained(
|
91 |
+
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token=token
|
92 |
+
).eval()
|
93 |
model.load_adapter(model_name)
|
94 |
processor = AutoProcessor.from_pretrained(model_name, token=token)
|
95 |
device = model.device
|
96 |
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
97 |
|
98 |
with gr.Blocks() as demo:
|
99 |
+
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models ππ")
|
100 |
gr.Markdown("## 1οΈβ£ Upload PDFs")
|
101 |
file = gr.File(file_types=["pdf"], file_count="multiple")
|
102 |
|
|
|
104 |
convert_button = gr.Button("π Convert and upload")
|
105 |
message = gr.Textbox("Files not yet uploaded")
|
106 |
embeds = gr.State(value=[])
|
107 |
+
imgs = gr.State(value=[])
|
108 |
|
109 |
# Define the actions
|
110 |
+
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
|
|
|
|
|
|
|
|
111 |
|
112 |
gr.Markdown("## 3οΈβ£ Search")
|
113 |
query = gr.Textbox(placeholder="Enter your query here")
|
|
|
115 |
message2 = gr.Textbox("Query not yet set")
|
116 |
output_img = gr.Image()
|
117 |
|
118 |
+
search_button.click(search, inputs=[query, embeds, imgs], outputs=[message2, output_img])
|
|
|
|
|
|
|
119 |
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
+
demo.queue(max_size=10).launch(debug=True)
|