Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from text_generation import Client | |
# HF-hosted endpoint for testing purposes (requires an HF API token) | |
API_TOKEN = os.environ.get("API_TOKEN", None) | |
CURRENT_CLIENT = Client("https://afrts4trc759c6eq.us-east-1.aws.endpoints.huggingface.cloud/generate_stream", | |
timeout=120, | |
headers={ | |
"Accept": "application/json", | |
"Authorization": f"Bearer {API_TOKEN}", | |
"Content-Type": "application/json"} | |
) | |
DEFAULT_HEADER = os.environ.get("HEADER", "") | |
DEFAULT_USER_NAME = os.environ.get("USER_NAME", "user") | |
DEFAULT_ASSISTANT_NAME = os.environ.get("ASSISTANT_NAME", "assistant") | |
DEFAULT_SEPARATOR = os.environ.get("SEPARATOR", "<|im_end|>") | |
PROMPT_TEMPLATE = "<|im_start|>{user_name}\n{query}{separator}\n<|im_start|>{assistant_name}\n{response}" | |
repo = None | |
def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep): | |
past = [] | |
for data in chatbot: | |
user_data, model_data = data | |
if not user_data.startswith(user_name): | |
user_data = user_name + user_data | |
if not model_data.startswith(sep + assistant_name): | |
model_data = sep + assistant_name + model_data | |
past.append(user_data + model_data.rstrip() + sep) | |
if not inputs.startswith(user_name): | |
inputs = user_name + inputs | |
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip() | |
return total_inputs | |
def has_no_history(chatbot, history): | |
return not chatbot and not history | |
def generate( | |
user_message, | |
chatbot, | |
history, | |
temperature, | |
top_p, | |
max_new_tokens, | |
repetition_penalty, | |
header, | |
user_name, | |
assistant_name, | |
separator | |
): | |
# Don't return meaningless message when the input is empty | |
if not user_message: | |
print("Empty input") | |
history.append(user_message) | |
past_messages = [] | |
for data in chatbot: | |
user_data, model_data = data | |
past_messages.extend( | |
[{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}] | |
) | |
print(past_messages) | |
if len(past_messages) < 1: | |
prompt = header + PROMPT_TEMPLATE.format(user_name=user_name, | |
query=user_message, | |
assistant_name=assistant_name, | |
response="", | |
separator=separator) | |
else: | |
prompt = header | |
for i in range(0, len(past_messages), 2): | |
intermediate_prompt = PROMPT_TEMPLATE.format(user_name=user_name, | |
query=past_messages[i]["content"], | |
assistant_name=assistant_name, | |
response=past_messages[i + 1]["content"], | |
separator=separator) | |
# print(prompt, separator, intermediate_prompt) | |
prompt = prompt + intermediate_prompt + separator + "\n" | |
# print(prompt) | |
prompt = prompt + PROMPT_TEMPLATE.format(user_name=user_name, | |
query=user_message, | |
assistant_name=assistant_name, | |
response="", | |
separator=separator) | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
top_k=40, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
truncate=1024, | |
# seed=42, | |
# stop_sequences=[user_name, DEFAULT_SEPARATOR] | |
stop_sequences=[DEFAULT_SEPARATOR] | |
) | |
# print(prompt) | |
stream = CURRENT_CLIENT.generate_stream( | |
prompt, | |
**generate_kwargs, | |
) | |
output = "" | |
for idx, response in enumerate(stream): | |
# print(response.token) | |
if response.token.text == '': | |
pass | |
# print(response.token.text) | |
# break | |
if response.token.special: | |
continue | |
output += response.token.text | |
if idx == 0: | |
history.append(" " + output) | |
else: | |
history[-1] = output | |
chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)] | |
# chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)] | |
yield chat, history, user_message, "" | |
return chat, history, user_message, "" | |
def clear_chat(): | |
return [], [] | |
title = """<h1 align="center">CroissantLLMChat Playground π₯</h1>""" | |
custom_css = """ | |
#banner-image { | |
display: block; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
#chat-message { | |
font-size: 14px; | |
min-height: 300px; | |
} | |
""" | |
with gr.Blocks(analytics_enabled=False, css=custom_css) as demo: | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
## Demo platform for π₯ CroissantLLMChat | |
The model is of small size (1.3B), about 130 times smaller than GPT3. | |
As such, it's generalist Chat version logically exhibits reduced understanding, reasoning and knowledge capacities. | |
For industrial uses, we recommend finetuning the model, but trained this Chat version to allow for experimenting and to showcase the capabilities for it's size. | |
## Usage recommendations | |
We recommend testing the chat model for open-ended writing tasks, tips, translations, etc... | |
We find direct instructions to work best, and performance to drop after the first round of interactions. | |
We limit the length of the conversation so clear the Chat between tests ! | |
## Errors | |
The demo is linked to an endpoint that auto-shutdowns after 15mn. If error message appears, wait about 5 minutes and test again once the server is back up ! | |
The model can hallucinate and generate incorrect or even toxic content. | |
""" | |
) | |
with gr.Row(): | |
with gr.Group(): | |
output = gr.Markdown() | |
chatbot = gr.Chatbot(elem_id="chat-message", label="Chat") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input") | |
with gr.Row(): | |
send_button = gr.Button("Send", elem_id="send-btn", visible=True) | |
clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True) | |
with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"): | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.5, | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
) | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.9, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
) | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
value=512, | |
minimum=0, | |
maximum=1024, | |
step=4, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition Penalty", | |
value=1.2, | |
minimum=0.0, | |
maximum=10, | |
step=0.1, | |
interactive=True, | |
info="The parameter for repetition penalty. 1.0 means no penalty.", | |
) | |
with gr.Accordion(label="Prompt", open=False, elem_id="prompt-accordion"): | |
header = gr.Textbox( | |
label="Header instructions", | |
value=DEFAULT_HEADER, | |
interactive=True, | |
info="Instructions given to the assistant at the beginning of the prompt", | |
) | |
user_name = gr.Textbox( | |
label="User name", | |
value=DEFAULT_USER_NAME, | |
interactive=True, | |
info="Name to be given to the user in the prompt", | |
) | |
assistant_name = gr.Textbox( | |
label="Assistant name", | |
value=DEFAULT_ASSISTANT_NAME, | |
interactive=True, | |
info="Name to be given to the assistant in the prompt", | |
) | |
separator = gr.Textbox( | |
label="Separator", | |
value=DEFAULT_SEPARATOR, | |
interactive=True, | |
info="Character to be used when the speaker changes in the prompt", | |
) | |
history = gr.State([]) | |
last_user_message = gr.State("") | |
user_message.submit( | |
generate, | |
inputs=[ | |
user_message, | |
chatbot, | |
history, | |
temperature, | |
top_p, | |
max_new_tokens, | |
repetition_penalty, | |
header, | |
user_name, | |
assistant_name, | |
separator | |
], | |
outputs=[chatbot, history, last_user_message, user_message], | |
) | |
send_button.click( | |
generate, | |
inputs=[ | |
user_message, | |
chatbot, | |
history, | |
temperature, | |
top_p, | |
max_new_tokens, | |
repetition_penalty, | |
header, | |
user_name, | |
assistant_name, | |
separator | |
], | |
outputs=[chatbot, history, last_user_message, user_message], | |
) | |
clear_chat_button.click(clear_chat, outputs=[chatbot, history]) | |
demo.queue().launch() | |