Spaces:
Runtime error
Runtime error
File size: 3,485 Bytes
dd204e1 6b119d2 499fb92 6b119d2 dd204e1 96d1677 46d202f a71fbbb 96d1677 a71fbbb 13f4578 6cfa228 dd204e1 b8c0eaf 73ed7f4 6b119d2 b8c0eaf 6b119d2 73ed7f4 b8c0eaf 73ed7f4 dd204e1 6cfa228 dd204e1 6cfa228 3407050 d5d0cfc 3407050 dd204e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
from model_functions import *
from preprocessor import *
import streamlit as st
import pandas as pd
@st.cache_data
def load_example_file(file):
with open(file, "rb") as f:
return f.read()
def main():
st.markdown("""
<style>
[data-testid-"stAppViewContainer"]{
background-color: #e6fedb;
}
</style>""",unsafe_allow_html=True)
# Load models
tokenizer_sentiment, model_sentiment = load_sentiment_analyzer()
tokenizer_summary, model_summary = load_summarizer()
pipe_ner = load_NER()
st.title("WhatsApp Analysis Tool")
st.markdown("This app summarizes Whatsapp chats and provides named entity recognition as well as sentiment analysis for the conversation")
st.markdown("**NOTE**: *This app can only receive chats downloaded from IOS as the downloaded chat format is different than from Android.*")
st.markdown("Download your whatsapp chat by going to Settings > Chats > Export Chat and there select the chat you want to summarize (download 'Without Media').")
st.markdown("**Example Files**: Download example zip files to test the app:")
example_files = {
"Example 1": "example1.zip",
"Example 2": "example2.zip",
"Example 3": "example3.zip"
}
for name, file in example_files.items():
data = load_example_file(file)
st.download_button(label=name, data=data, file_name=file, mime="application/zip")
# File uploader
uploaded_file = st.file_uploader("Choose a file (.zip)", type=['zip'])
if uploaded_file is not None:
file_type = detect_file_type(uploaded_file.name)
if file_type == "zip":
# Process the file
data = preprocess_whatsapp_messages(uploaded_file, file_type)
if data.empty:
st.write("No messages found or the file could not be processed.")
else:
# Date selector
date_options = data['date'].dt.strftime('%Y-%m-%d').unique()
selected_date = st.selectbox("Select a date for analysis:", date_options)
if selected_date:
text_for_analysis = get_dated_input(data, selected_date)
with st.expander("Show/Hide Original Conversation"):
st.markdown(f"```\n{text_for_analysis}\n```", unsafe_allow_html=True)
process = st.button('Process')
if process:
# Perform analysis
sentiment = get_sentiment_analysis(text_for_analysis, tokenizer_sentiment, model_sentiment)
summary = generate_summary(text_for_analysis, tokenizer_summary, model_summary)
ner_results = get_NER(summary, pipe_ner)
# Display results
st.subheader("Sentiment Analysis")
st.write("Sentiment:", sentiment)
st.subheader("Summary")
st.write("Summary:", summary)
st.subheader("Named Entity Recognition")
ner_df = pd.DataFrame(ner_results, columns=["Word", "Entity Group"])
st.write(ner_df)
else:
st.error("Unsupported file type. Please upload a .txt or .zip file.")
else:
st.info("Please upload a file to proceed.")
if __name__ == "__main__":
main() |