from torch import cuda, bfloat16 import torch import transformers from transformers import AutoTokenizer from time import time import chromadb from chromadb.config import Settings from langchain_community.llms import HuggingFacePipeline from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings from langchain_community.vectorstores import Chroma from langchain.document_loaders.csv_loader import CSVLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains import RetrievalQA import gradio as gr ############################################################################# model_id = "marcolorenzi98/tinyllama-enron-v1" device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' # set quantization configuration to load large model with less GPU memory # this requires the `bitsandbytes` library bnb_config = transformers.BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=bfloat16 ) ############################################################################## model_config = transformers.AutoConfig.from_pretrained(model_id) model = transformers.AutoModelForCausalLM.from_pretrained( model_id,trust_remote_code=True, config=model_config, #quantization_config=bnb_config, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(model_id) ############################################################################## embedding = SpacyEmbeddings(model_name="en_core_web_sm") # Embed and store the texts # Supplying a persist_directory will store the embeddings on disk persist_directory = 'Enron_case_RAG/Langchain_ChromaDB' # load from disk db3 = Chroma(persist_directory=persist_directory, embedding_function=embedding, collection_name="Enron_vectorstore" ) ############################################################################## query_pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto") llm = HuggingFacePipeline(pipeline=query_pipeline) retriever = db3.as_retriever() ############################################################################## def gradio_rag(query): qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, verbose=True) print(f"Query: {query}\n") time_1 = time() result = qa.run(query) time_2 = time() print(f"Inference time: {round(time_2-time_1, 3)} sec.") print("\nResult: ", result) ############################################################################### demo = gr.Interface( fn=gradio_rag, inputs=gr.Textbox(label="Please, write your request here:", placeholder="example: who is Sheila Chang", lines=5), outputs=gr.Textbox(label="Answer:"), title='Tiny Llama RAG on Enron Scandal', description="This is a RAG system based on the SLM Tiny Llama, fine tuned on the Enron Scandal Emails' dataset", examples=[["Who is Sheila Chang"], ["What were the key factors that led to the collapse of Enron?"], ["What were the repercussions of the Enron scandal on the energy industry and financial markets?"], ["How did Enron's accounting firm, Arthur Andersen, contribute to the scandal?"]], allow_flagging="never" ) demo.launch(debug=False)