Spaces:
Build error
Build error
update to musika 44khz
Browse files- LICENSE +21 -0
- README.md +1 -1
- __pycache__/layers.cpython-39.pyc +0 -0
- __pycache__/models.cpython-39.pyc +0 -0
- __pycache__/parse_test.cpython-39.pyc +0 -0
- __pycache__/utils.cpython-39.pyc +0 -0
- app.py +2 -2
- checkpoints/{classical → ae}/dec.h5 +2 -2
- checkpoints/{techno → ae}/dec2.h5 +2 -2
- checkpoints/{classical/dec2.h5 → ae/enc.h5} +2 -2
- checkpoints/{techno/dec.h5 → ae/enc2.h5} +2 -2
- checkpoints/{classical → metal}/gen_ema.h5 +2 -2
- checkpoints/misc/gen_ema.h5 +3 -0
- checkpoints/techno/gen_ema.h5 +2 -2
- layers.py +17 -18
- models.py +355 -403
- musika.py → musika_test.py +6 -3
- parse_test.py +57 -26
- requirements.txt +4 -12
- utils.py +322 -129
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 Marco Pasini
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🎵
|
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: cc-by-4.0
|
|
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.3.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: cc-by-4.0
|
__pycache__/layers.cpython-39.pyc
DELETED
Binary file (5.8 kB)
|
|
__pycache__/models.cpython-39.pyc
DELETED
Binary file (13.5 kB)
|
|
__pycache__/parse_test.cpython-39.pyc
DELETED
Binary file (3.47 kB)
|
|
__pycache__/utils.cpython-39.pyc
DELETED
Binary file (16.5 kB)
|
|
app.py
CHANGED
@@ -8,8 +8,8 @@ args = parse_args()
|
|
8 |
|
9 |
# initialize networks
|
10 |
M = Models_functions(args)
|
11 |
-
|
12 |
|
13 |
# test musika
|
14 |
U = Utils_functions(args)
|
15 |
-
U.render_gradio(
|
|
|
8 |
|
9 |
# initialize networks
|
10 |
M = Models_functions(args)
|
11 |
+
models_ls_1, models_ls_2, models_ls_3 = M.get_networks()
|
12 |
|
13 |
# test musika
|
14 |
U = Utils_functions(args)
|
15 |
+
U.render_gradio(models_ls_1, models_ls_2, models_ls_3, train=False)
|
checkpoints/{classical → ae}/dec.h5
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9aebbb210da611415c8e15b4bd7cc62c20d6a702169c709c3e6cc3912fb0aa84
|
3 |
+
size 50781776
|
checkpoints/{techno → ae}/dec2.h5
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffc4c0d6821e23247889a2252da86f9ba22ad6425d004790457e0c2e57e18c65
|
3 |
+
size 26616400
|
checkpoints/{classical/dec2.h5 → ae/enc.h5}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e56882c9e62aa4703a6d088efc374bfc534a4a8b4f3cdc0418fab1f0da1795a7
|
3 |
+
size 19196936
|
checkpoints/{techno/dec.h5 → ae/enc2.h5}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2f2f2b2b2879ad14690b2e64eb59f3b5dc3fbffaa88b37fdf5e8735b9dad305
|
3 |
+
size 15986152
|
checkpoints/{classical → metal}/gen_ema.h5
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e1f59d7fc67df5fa9eb0ab4665bcc9fe27d346fcfe60a082c8937c622105d7f
|
3 |
+
size 62200720
|
checkpoints/misc/gen_ema.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f0cb86f0bf22a568f1ef1ad5782d11543f9779069de996b81907328eeb24c8e
|
3 |
+
size 62200720
|
checkpoints/techno/gen_ema.h5
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:582149f06f50197022758a7ca981a13164364871321ab2cf0662fc6ed7d634b0
|
3 |
+
size 62200304
|
layers.py
CHANGED
@@ -1,12 +1,7 @@
|
|
1 |
import tensorflow as tf
|
2 |
-
import tensorflow.keras.backend as K
|
3 |
-
from tensorflow.keras.layers import Conv2D, Conv2DTranspose, Dense
|
4 |
from tensorflow.python.eager import context
|
5 |
-
from tensorflow.python.framework import tensor_shape
|
6 |
-
from tensorflow.python.keras import activations, constraints, initializers, regularizers
|
7 |
-
from tensorflow.python.keras.layers.convolutional import SeparableConv
|
8 |
from tensorflow.python.ops import (
|
9 |
-
array_ops,
|
10 |
gen_math_ops,
|
11 |
math_ops,
|
12 |
sparse_ops,
|
@@ -19,9 +14,10 @@ def l2normalize(v, eps=1e-12):
|
|
19 |
|
20 |
|
21 |
class ConvSN2D(tf.keras.layers.Conv2D):
|
22 |
-
def __init__(self, filters, kernel_size, power_iterations=1, **kwargs):
|
23 |
super(ConvSN2D, self).__init__(filters, kernel_size, **kwargs)
|
24 |
self.power_iterations = power_iterations
|
|
|
25 |
|
26 |
def build(self, input_shape):
|
27 |
super(ConvSN2D, self).build(input_shape)
|
@@ -70,7 +66,11 @@ class ConvSN2D(tf.keras.layers.Conv2D):
|
|
70 |
return outputs
|
71 |
|
72 |
|
73 |
-
class DenseSN(Dense):
|
|
|
|
|
|
|
|
|
74 |
def build(self, input_shape):
|
75 |
super(DenseSN, self).build(input_shape)
|
76 |
|
@@ -79,7 +79,7 @@ class DenseSN(Dense):
|
|
79 |
shape=tuple([1, self.kernel.shape.as_list()[-1]]),
|
80 |
initializer=tf.initializers.RandomNormal(0, 1),
|
81 |
trainable=False,
|
82 |
-
dtype=self.
|
83 |
)
|
84 |
|
85 |
def compute_spectral_norm(self, W, new_u, W_shape):
|
@@ -116,6 +116,10 @@ class DenseSN(Dense):
|
|
116 |
|
117 |
|
118 |
class AddNoise(tf.keras.layers.Layer):
|
|
|
|
|
|
|
|
|
119 |
def build(self, input_shape):
|
120 |
self.b = self.add_weight(
|
121 |
shape=[
|
@@ -131,26 +135,24 @@ class AddNoise(tf.keras.layers.Layer):
|
|
131 |
[tf.shape(inputs)[0], inputs.shape[1], inputs.shape[2], 1],
|
132 |
mean=0.0,
|
133 |
stddev=1.0,
|
134 |
-
dtype=self.
|
135 |
)
|
136 |
output = inputs + self.b * rand
|
137 |
return output
|
138 |
|
139 |
|
140 |
class PosEnc(tf.keras.layers.Layer):
|
141 |
-
def __init__(self, **kwargs):
|
142 |
super(PosEnc, self).__init__(**kwargs)
|
|
|
143 |
|
144 |
def call(self, inputs):
|
145 |
-
# inputs shape: [bs,mel_bins,shape,1]
|
146 |
pos = tf.repeat(
|
147 |
tf.reshape(tf.range(inputs.shape[-3], dtype=tf.int32), [1, -1, 1, 1]),
|
148 |
inputs.shape[-2],
|
149 |
-2,
|
150 |
)
|
151 |
-
pos = tf.cast(tf.repeat(pos, tf.shape(inputs)[0], 0), self.dtype) / tf.cast(
|
152 |
-
inputs.shape[-3], self.dtype
|
153 |
-
)
|
154 |
return tf.concat([inputs, pos], -1) # [bs,1,hop,2]
|
155 |
|
156 |
|
@@ -159,6 +161,3 @@ def flatten_hw(x, data_format="channels_last"):
|
|
159 |
x = tf.transpose(x, perm=[0, 3, 1, 2]) # Convert to `channels_first`
|
160 |
|
161 |
old_shape = tf.shape(x)
|
162 |
-
new_shape = [old_shape[0], old_shape[2] * old_shape[3], old_shape[1]]
|
163 |
-
|
164 |
-
return tf.reshape(x, new_shape)
|
|
|
1 |
import tensorflow as tf
|
2 |
+
import tensorflow.python.keras.backend as K
|
|
|
3 |
from tensorflow.python.eager import context
|
|
|
|
|
|
|
4 |
from tensorflow.python.ops import (
|
|
|
5 |
gen_math_ops,
|
6 |
math_ops,
|
7 |
sparse_ops,
|
|
|
14 |
|
15 |
|
16 |
class ConvSN2D(tf.keras.layers.Conv2D):
|
17 |
+
def __init__(self, filters, kernel_size, power_iterations=1, datatype=tf.float32, **kwargs):
|
18 |
super(ConvSN2D, self).__init__(filters, kernel_size, **kwargs)
|
19 |
self.power_iterations = power_iterations
|
20 |
+
self.datatype = datatype
|
21 |
|
22 |
def build(self, input_shape):
|
23 |
super(ConvSN2D, self).build(input_shape)
|
|
|
66 |
return outputs
|
67 |
|
68 |
|
69 |
+
class DenseSN(tf.keras.layers.Dense):
|
70 |
+
def __init__(self, datatype=tf.float32, **kwargs):
|
71 |
+
super(DenseSN, self).__init__(**kwargs)
|
72 |
+
self.datatype = datatype
|
73 |
+
|
74 |
def build(self, input_shape):
|
75 |
super(DenseSN, self).build(input_shape)
|
76 |
|
|
|
79 |
shape=tuple([1, self.kernel.shape.as_list()[-1]]),
|
80 |
initializer=tf.initializers.RandomNormal(0, 1),
|
81 |
trainable=False,
|
82 |
+
dtype=self.datatype,
|
83 |
)
|
84 |
|
85 |
def compute_spectral_norm(self, W, new_u, W_shape):
|
|
|
116 |
|
117 |
|
118 |
class AddNoise(tf.keras.layers.Layer):
|
119 |
+
def __init__(self, datatype=tf.float32, **kwargs):
|
120 |
+
super(AddNoise, self).__init__(**kwargs)
|
121 |
+
self.datatype = datatype
|
122 |
+
|
123 |
def build(self, input_shape):
|
124 |
self.b = self.add_weight(
|
125 |
shape=[
|
|
|
135 |
[tf.shape(inputs)[0], inputs.shape[1], inputs.shape[2], 1],
|
136 |
mean=0.0,
|
137 |
stddev=1.0,
|
138 |
+
dtype=self.datatype,
|
139 |
)
|
140 |
output = inputs + self.b * rand
|
141 |
return output
|
142 |
|
143 |
|
144 |
class PosEnc(tf.keras.layers.Layer):
|
145 |
+
def __init__(self, datatype=tf.float32, **kwargs):
|
146 |
super(PosEnc, self).__init__(**kwargs)
|
147 |
+
self.datatype = datatype
|
148 |
|
149 |
def call(self, inputs):
|
|
|
150 |
pos = tf.repeat(
|
151 |
tf.reshape(tf.range(inputs.shape[-3], dtype=tf.int32), [1, -1, 1, 1]),
|
152 |
inputs.shape[-2],
|
153 |
-2,
|
154 |
)
|
155 |
+
pos = tf.cast(tf.repeat(pos, tf.shape(inputs)[0], 0), self.dtype) / tf.cast(inputs.shape[-3], self.datatype)
|
|
|
|
|
156 |
return tf.concat([inputs, pos], -1) # [bs,1,hop,2]
|
157 |
|
158 |
|
|
|
161 |
x = tf.transpose(x, perm=[0, 3, 1, 2]) # Convert to `channels_first`
|
162 |
|
163 |
old_shape = tf.shape(x)
|
|
|
|
|
|
models.py
CHANGED
@@ -1,60 +1,31 @@
|
|
1 |
import numpy as np
|
2 |
import tensorflow as tf
|
3 |
-
import tensorflow_addons as tfa
|
4 |
-
from tensorflow.keras import mixed_precision
|
5 |
-
from tensorflow.keras.layers import (
|
6 |
-
Add,
|
7 |
-
BatchNormalization,
|
8 |
-
Concatenate,
|
9 |
-
Conv2D,
|
10 |
-
Conv2DTranspose,
|
11 |
-
Cropping1D,
|
12 |
-
Cropping2D,
|
13 |
-
Dense,
|
14 |
-
Dot,
|
15 |
-
Flatten,
|
16 |
-
GlobalAveragePooling2D,
|
17 |
-
Input,
|
18 |
-
Lambda,
|
19 |
-
LeakyReLU,
|
20 |
-
Multiply,
|
21 |
-
ReLU,
|
22 |
-
Reshape,
|
23 |
-
SeparableConv2D,
|
24 |
-
UpSampling2D,
|
25 |
-
ZeroPadding2D,
|
26 |
-
)
|
27 |
-
from tensorflow.keras.models import Model, Sequential
|
28 |
-
from tensorflow.keras.optimizers import Adam
|
29 |
from tensorflow.python.keras.utils.layer_utils import count_params
|
30 |
|
31 |
-
from layers import
|
32 |
|
33 |
|
34 |
class Models_functions:
|
35 |
def __init__(self, args):
|
36 |
|
37 |
self.args = args
|
|
|
38 |
if self.args.mixed_precision:
|
39 |
-
self.mixed_precision = mixed_precision
|
40 |
-
self.policy = mixed_precision.Policy("mixed_float16")
|
41 |
-
mixed_precision.set_global_policy(self.policy)
|
42 |
self.init = tf.keras.initializers.he_uniform()
|
43 |
|
44 |
def conv_util(
|
45 |
-
self,
|
46 |
-
inp,
|
47 |
-
filters,
|
48 |
-
kernel_size=(1, 3),
|
49 |
-
strides=(1, 1),
|
50 |
-
noise=False,
|
51 |
-
upsample=False,
|
52 |
-
padding="same",
|
53 |
-
bn=True,
|
54 |
):
|
55 |
|
56 |
x = inp
|
57 |
|
|
|
|
|
|
|
|
|
58 |
if upsample:
|
59 |
x = tf.keras.layers.Conv2DTranspose(
|
60 |
filters,
|
@@ -63,6 +34,7 @@ class Models_functions:
|
|
63 |
activation="linear",
|
64 |
padding=padding,
|
65 |
kernel_initializer=self.init,
|
|
|
66 |
)(x)
|
67 |
else:
|
68 |
x = tf.keras.layers.Conv2D(
|
@@ -72,19 +44,26 @@ class Models_functions:
|
|
72 |
activation="linear",
|
73 |
padding=padding,
|
74 |
kernel_initializer=self.init,
|
|
|
75 |
)(x)
|
76 |
|
77 |
if noise:
|
78 |
-
x = AddNoise()(x)
|
79 |
|
80 |
-
if
|
81 |
x = tf.keras.layers.BatchNormalization()(x)
|
82 |
|
83 |
x = tf.keras.activations.swish(x)
|
84 |
|
85 |
return x
|
86 |
|
87 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
emb = tf.keras.layers.Conv2D(
|
89 |
x.shape[-1],
|
90 |
kernel_size=(1, 1),
|
@@ -93,32 +72,11 @@ class Models_functions:
|
|
93 |
padding="same",
|
94 |
kernel_initializer=self.init,
|
95 |
use_bias=True,
|
|
|
96 |
)(emb)
|
97 |
-
x = x / (tf.math.reduce_std(x, -2, keepdims=True) + 1e-
|
98 |
return x * emb
|
99 |
|
100 |
-
def se_layer(self, x, filters):
|
101 |
-
x = tf.reduce_mean(x, -2, keepdims=True)
|
102 |
-
x = tf.keras.layers.Conv2D(
|
103 |
-
filters,
|
104 |
-
kernel_size=(1, 1),
|
105 |
-
strides=(1, 1),
|
106 |
-
activation="linear",
|
107 |
-
padding="valid",
|
108 |
-
kernel_initializer=self.init,
|
109 |
-
use_bias=True,
|
110 |
-
)(x)
|
111 |
-
x = tf.keras.activations.swish(x)
|
112 |
-
return tf.keras.layers.Conv2D(
|
113 |
-
filters,
|
114 |
-
kernel_size=(1, 1),
|
115 |
-
strides=(1, 1),
|
116 |
-
activation="sigmoid",
|
117 |
-
padding="valid",
|
118 |
-
kernel_initializer=self.init,
|
119 |
-
use_bias=True,
|
120 |
-
)(x)
|
121 |
-
|
122 |
def conv_util_gen(
|
123 |
self,
|
124 |
inp,
|
@@ -129,6 +87,7 @@ class Models_functions:
|
|
129 |
upsample=False,
|
130 |
emb=None,
|
131 |
se1=None,
|
|
|
132 |
):
|
133 |
|
134 |
x = inp
|
@@ -142,6 +101,7 @@ class Models_functions:
|
|
142 |
padding="same",
|
143 |
kernel_initializer=self.init,
|
144 |
use_bias=True,
|
|
|
145 |
)(x)
|
146 |
else:
|
147 |
x = tf.keras.layers.Conv2D(
|
@@ -152,24 +112,22 @@ class Models_functions:
|
|
152 |
padding="same",
|
153 |
kernel_initializer=self.init,
|
154 |
use_bias=True,
|
|
|
155 |
)(x)
|
156 |
|
157 |
if noise:
|
158 |
-
x = AddNoise()(x)
|
159 |
|
160 |
if emb is not None:
|
161 |
-
x = self.adain(x, emb)
|
162 |
else:
|
163 |
-
x = tf.keras.layers.BatchNormalization()(x)
|
164 |
-
|
165 |
-
x1 = tf.keras.activations.swish(x)
|
166 |
|
167 |
-
|
168 |
-
x1 = x1 * se1
|
169 |
|
170 |
-
return
|
171 |
|
172 |
-
def res_block_disc(self, inp, filters, kernel_size=(1, 3), kernel_size_2=None, strides=(1, 1)):
|
173 |
|
174 |
if kernel_size_2 is None:
|
175 |
kernel_size_2 = kernel_size
|
@@ -181,6 +139,7 @@ class Models_functions:
|
|
181 |
activation="linear",
|
182 |
padding="same",
|
183 |
kernel_initializer=self.init,
|
|
|
184 |
)(inp)
|
185 |
x = tf.keras.layers.LeakyReLU(0.2)(x)
|
186 |
x = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * x
|
@@ -191,6 +150,7 @@ class Models_functions:
|
|
191 |
activation="linear",
|
192 |
padding="same",
|
193 |
kernel_initializer=self.init,
|
|
|
194 |
)(x)
|
195 |
x = tf.keras.layers.LeakyReLU(0.2)(x)
|
196 |
x = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * x
|
@@ -207,28 +167,32 @@ class Models_functions:
|
|
207 |
padding="same",
|
208 |
kernel_initializer=self.init,
|
209 |
use_bias=False,
|
|
|
210 |
)(inp)
|
211 |
|
212 |
return x + inp
|
213 |
|
214 |
def build_encoder2(self):
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
inpf = Input((1, self.args.shape, dim))
|
219 |
|
220 |
-
inpfls = tf.split(inpf,
|
221 |
inpb = tf.concat(inpfls, 0)
|
222 |
|
223 |
-
g0 = self.conv_util(inpb,
|
224 |
-
g1 = self.conv_util(
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
g = tf.keras.layers.Conv2D(
|
231 |
-
|
232 |
kernel_size=(1, 1),
|
233 |
strides=1,
|
234 |
padding="valid",
|
@@ -237,50 +201,61 @@ class Models_functions:
|
|
237 |
activation="tanh",
|
238 |
)(g5)
|
239 |
|
240 |
-
gls = tf.split(g,
|
241 |
g = tf.concat(gls, -2)
|
242 |
gls = tf.split(g, 2, -2)
|
243 |
g = tf.concat(gls, 0)
|
244 |
|
245 |
gf = tf.cast(g, tf.float32)
|
246 |
-
return Model(inpf, gf, name="ENC2")
|
247 |
|
248 |
-
|
249 |
|
250 |
-
|
251 |
-
bottledim = 64
|
252 |
|
253 |
-
inpf = Input((1, self.args.shape //
|
254 |
|
255 |
g = inpf
|
256 |
|
|
|
|
|
|
|
257 |
g = self.conv_util(
|
258 |
g,
|
259 |
-
|
260 |
kernel_size=(1, 4),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
strides=(1, 1),
|
262 |
upsample=False,
|
263 |
noise=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
)
|
265 |
g = self.conv_util(
|
266 |
g,
|
267 |
-
|
268 |
kernel_size=(1, 4),
|
269 |
strides=(1, 2),
|
270 |
upsample=True,
|
271 |
noise=True,
|
|
|
272 |
)
|
273 |
-
g = self.conv_util(g,
|
274 |
-
g = self.conv_util(g, 512, kernel_size=(1, 4), strides=(1, 1), upsample=False, noise=True)
|
275 |
-
g = self.conv_util(g, 256 + 128, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True)
|
276 |
|
277 |
gf = tf.keras.layers.Conv2D(
|
278 |
-
|
279 |
-
kernel_size=(1, 1),
|
280 |
-
strides=1,
|
281 |
-
padding="same",
|
282 |
-
activation="tanh",
|
283 |
-
kernel_initializer=self.init,
|
284 |
)(g)
|
285 |
|
286 |
gfls = tf.split(gf, 2, 0)
|
@@ -288,131 +263,77 @@ class Models_functions:
|
|
288 |
|
289 |
gf = tf.cast(gf, tf.float32)
|
290 |
|
291 |
-
return Model(inpf, gf, name="DEC2")
|
292 |
|
293 |
def build_encoder(self):
|
294 |
|
295 |
dim = ((4 * self.args.hop) // 2) + 1
|
296 |
|
297 |
-
inpf = Input((dim, self.args.shape, 1))
|
298 |
|
299 |
ginp = tf.transpose(inpf, [0, 3, 2, 1])
|
300 |
|
301 |
-
g0 = self.conv_util(
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
padding="valid",
|
307 |
-
)
|
308 |
-
|
309 |
-
g = self.conv_util(
|
310 |
-
g0,
|
311 |
-
self.args.hop * 2 + 64,
|
312 |
-
kernel_size=(1, 1),
|
313 |
-
strides=(1, 1),
|
314 |
-
padding="valid",
|
315 |
-
)
|
316 |
-
g = self.conv_util(
|
317 |
-
g,
|
318 |
-
self.args.hop * 2 + 64 + 64,
|
319 |
-
kernel_size=(1, 1),
|
320 |
-
strides=(1, 1),
|
321 |
-
padding="valid",
|
322 |
-
)
|
323 |
-
g = self.conv_util(
|
324 |
-
g,
|
325 |
-
self.args.hop * 2 + 128 + 64,
|
326 |
-
kernel_size=(1, 1),
|
327 |
-
strides=(1, 1),
|
328 |
-
padding="valid",
|
329 |
-
)
|
330 |
-
g = self.conv_util(
|
331 |
-
g,
|
332 |
-
self.args.hop * 2 + 128 + 128,
|
333 |
-
kernel_size=(1, 1),
|
334 |
-
strides=(1, 1),
|
335 |
-
padding="valid",
|
336 |
-
)
|
337 |
|
338 |
g = tf.keras.layers.Conv2D(
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
|
347 |
-
|
348 |
-
gb = tf.concat(gbls, 0)
|
349 |
|
350 |
-
|
351 |
-
return Model(inpf, gb, name="ENC")
|
352 |
|
353 |
def build_decoder(self):
|
354 |
|
355 |
dim = ((4 * self.args.hop) // 2) + 1
|
356 |
|
357 |
-
inpf = Input((1, self.args.shape // 2,
|
358 |
|
359 |
g = inpf
|
360 |
|
361 |
-
g0 = self.conv_util(g, self.args.hop * 3, kernel_size=(1,
|
|
|
|
|
|
|
|
|
362 |
|
363 |
-
|
364 |
-
|
365 |
-
g1,
|
366 |
-
self.args.hop + self.args.hop // 2,
|
367 |
-
kernel_size=(1, 3),
|
368 |
-
strides=(1, 2),
|
369 |
-
noise=True,
|
370 |
)
|
371 |
-
|
372 |
-
|
373 |
-
self.args.hop + self.args.hop // 4,
|
374 |
-
kernel_size=(1, 3),
|
375 |
-
strides=(1, 2),
|
376 |
-
noise=True,
|
377 |
)
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
kernel_size=(1, 4),
|
383 |
-
strides=(1, 2),
|
384 |
-
upsample=True,
|
385 |
-
noise=True,
|
386 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
g = self.conv_util(
|
388 |
-
|
389 |
-
self.args.hop * 2,
|
390 |
-
kernel_size=(1, 4),
|
391 |
-
strides=(1, 2),
|
392 |
-
upsample=True,
|
393 |
-
noise=True,
|
394 |
)
|
395 |
g = self.conv_util(
|
396 |
-
g +
|
397 |
-
self.args.hop * 3,
|
398 |
-
kernel_size=(1, 4),
|
399 |
-
strides=(1, 2),
|
400 |
-
upsample=True,
|
401 |
-
noise=True,
|
402 |
)
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
dim * 2,
|
408 |
-
kernel_size=(1, 1),
|
409 |
-
strides=(1, 1),
|
410 |
-
kernel_initializer=self.init,
|
411 |
-
padding="same",
|
412 |
-
)(g)
|
413 |
-
g = tf.clip_by_value(g, -1.0, 1.0)
|
414 |
-
|
415 |
-
gf, pf = tf.split(g, 2, -1)
|
416 |
|
417 |
gfls = tf.split(gf, self.args.shape // self.args.window, 0)
|
418 |
gf = tf.concat(gfls, -2)
|
@@ -426,128 +347,60 @@ class Models_functions:
|
|
426 |
s = tf.cast(tf.squeeze(s, -1), tf.float32)
|
427 |
p = tf.cast(tf.squeeze(p, -1), tf.float32)
|
428 |
|
429 |
-
return Model(inpf, [s, p], name="DEC")
|
430 |
|
431 |
def build_critic(self):
|
432 |
|
433 |
-
sinp = Input(shape=(1, self.args.latlen, self.args.latdepth * 2))
|
434 |
-
|
435 |
-
dim = 64 * 2
|
436 |
-
|
437 |
-
sf = tf.keras.layers.Conv2D(
|
438 |
-
self.args.latdepth * 4,
|
439 |
-
kernel_size=(1, 1),
|
440 |
-
strides=(1, 1),
|
441 |
-
activation="linear",
|
442 |
-
padding="valid",
|
443 |
-
kernel_initializer=self.init,
|
444 |
-
use_bias=False,
|
445 |
-
trainable=False,
|
446 |
-
)(sinp)
|
447 |
|
448 |
sf = tf.keras.layers.Conv2D(
|
449 |
-
|
450 |
-
kernel_size=(1,
|
451 |
strides=(1, 2),
|
452 |
activation="linear",
|
453 |
padding="same",
|
454 |
kernel_initializer=self.init,
|
455 |
-
|
|
|
456 |
sf = tf.keras.layers.LeakyReLU(0.2)(sf)
|
457 |
-
sf = self.res_block_disc(sf, 256 + 128 + 128, kernel_size=(1, 3), strides=(1, 2))
|
458 |
-
sf = self.res_block_disc(sf, 512 + 128, kernel_size=(1, 3), strides=(1, 2))
|
459 |
-
sf = self.res_block_disc(sf, 512 + 256, kernel_size=(1, 3), strides=(1, 2))
|
460 |
-
sf = self.res_block_disc(sf, 512 + 128 + 256, kernel_size=(1, 3), strides=(1, 2))
|
461 |
-
sfo = self.res_block_disc(sf, 512 + 512, kernel_size=(1, 3), strides=(1, 2), kernel_size_2=(1, 1))
|
462 |
-
sf = sfo
|
463 |
|
464 |
-
|
465 |
|
466 |
-
|
467 |
-
sfo = tf.cast(sfo, tf.float32)
|
468 |
|
469 |
-
|
470 |
|
471 |
-
|
472 |
|
473 |
-
|
|
|
|
|
|
|
474 |
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
kernel_size=(1, 4),
|
480 |
-
strides=(1, 2),
|
481 |
-
activation="linear",
|
482 |
-
padding="same",
|
483 |
-
kernel_initializer=self.init,
|
484 |
-
)(sinp)
|
485 |
-
sf = tf.keras.layers.LeakyReLU(0.2)(sf)
|
486 |
-
|
487 |
-
sf = tf.keras.layers.Conv2DTranspose(
|
488 |
-
256 + 128 + 64,
|
489 |
-
kernel_size=(1, 4),
|
490 |
-
strides=(1, 2),
|
491 |
-
activation="linear",
|
492 |
-
padding="same",
|
493 |
-
kernel_initializer=self.init,
|
494 |
-
)(sf)
|
495 |
-
sf = tf.keras.layers.LeakyReLU(0.2)(sf)
|
496 |
-
sf = tf.keras.layers.Conv2DTranspose(
|
497 |
-
256 + 128,
|
498 |
-
kernel_size=(1, 4),
|
499 |
-
strides=(1, 2),
|
500 |
-
activation="linear",
|
501 |
-
padding="same",
|
502 |
-
kernel_initializer=self.init,
|
503 |
-
)(sf)
|
504 |
-
sf = tf.keras.layers.LeakyReLU(0.2)(sf)
|
505 |
-
sf = tf.keras.layers.Conv2DTranspose(
|
506 |
-
256 + 64,
|
507 |
-
kernel_size=(1, 4),
|
508 |
-
strides=(1, 2),
|
509 |
-
activation="linear",
|
510 |
-
padding="same",
|
511 |
-
kernel_initializer=self.init,
|
512 |
-
)(sf)
|
513 |
-
sf = tf.keras.layers.LeakyReLU(0.2)(sf)
|
514 |
-
sf = tf.keras.layers.Conv2DTranspose(
|
515 |
-
256,
|
516 |
-
kernel_size=(1, 4),
|
517 |
-
strides=(1, 2),
|
518 |
-
activation="linear",
|
519 |
-
padding="same",
|
520 |
-
kernel_initializer=self.init,
|
521 |
-
)(sf)
|
522 |
-
sf = tf.keras.layers.LeakyReLU(0.2)(sf)
|
523 |
-
sf = tf.keras.layers.Conv2DTranspose(
|
524 |
-
128 + 64,
|
525 |
-
kernel_size=(1, 4),
|
526 |
-
strides=(1, 2),
|
527 |
activation="linear",
|
528 |
padding="same",
|
529 |
kernel_initializer=self.init,
|
|
|
530 |
)(sf)
|
531 |
sf = tf.keras.layers.LeakyReLU(0.2)(sf)
|
532 |
|
533 |
-
gf = tf.keras.layers.
|
534 |
-
|
535 |
-
|
536 |
-
strides=(1, 1),
|
537 |
-
activation="tanh",
|
538 |
-
padding="same",
|
539 |
-
kernel_initializer=self.init,
|
540 |
-
)(sf)
|
541 |
|
542 |
gf = tf.cast(gf, tf.float32)
|
543 |
|
544 |
-
return Model(sinp, gf, name="
|
545 |
|
546 |
def build_generator(self):
|
547 |
|
548 |
dim = self.args.latdepth * 2
|
549 |
|
550 |
-
inpf = Input((self.args.latlen, self.args.latdepth * 2))
|
551 |
|
552 |
inpfls = tf.split(inpf, 2, -2)
|
553 |
inpb = tf.concat(inpfls, 0)
|
@@ -558,112 +411,213 @@ class Models_functions:
|
|
558 |
inp3 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp2)
|
559 |
inp4 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp3)
|
560 |
inp5 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp4)
|
561 |
-
|
|
|
562 |
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
|
574 |
-
g = self.conv_util_gen(
|
575 |
-
g,
|
576 |
-
512 + 256,
|
577 |
-
kernel_size=(1, 4),
|
578 |
-
strides=(1, 2),
|
579 |
-
upsample=True,
|
580 |
-
noise=True,
|
581 |
-
emb=inp4,
|
582 |
-
)
|
583 |
-
g1 = self.conv_util_gen(
|
584 |
-
g,
|
585 |
-
512 + 256,
|
586 |
-
kernel_size=(1, 1),
|
587 |
-
strides=(1, 1),
|
588 |
-
upsample=False,
|
589 |
-
noise=True,
|
590 |
-
emb=inp4,
|
591 |
-
)
|
592 |
g2 = self.conv_util_gen(
|
593 |
g1,
|
594 |
-
|
595 |
kernel_size=(1, 4),
|
596 |
strides=(1, 2),
|
597 |
upsample=True,
|
598 |
noise=True,
|
599 |
emb=inp3,
|
|
|
600 |
)
|
601 |
-
|
|
|
602 |
g2,
|
603 |
-
|
604 |
-
kernel_size=(1,
|
605 |
strides=(1, 1),
|
606 |
upsample=False,
|
607 |
noise=True,
|
608 |
emb=inp3,
|
|
|
609 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
610 |
g3 = self.conv_util_gen(
|
611 |
-
|
612 |
-
|
613 |
kernel_size=(1, 4),
|
614 |
strides=(1, 2),
|
615 |
upsample=True,
|
616 |
noise=True,
|
617 |
emb=inp2,
|
618 |
-
|
619 |
)
|
|
|
620 |
g3 = self.conv_util_gen(
|
621 |
g3,
|
622 |
-
|
623 |
-
kernel_size=(1,
|
624 |
strides=(1, 1),
|
625 |
upsample=False,
|
626 |
noise=True,
|
627 |
emb=inp2,
|
628 |
-
|
629 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
630 |
g4 = self.conv_util_gen(
|
631 |
g3,
|
632 |
-
|
633 |
kernel_size=(1, 4),
|
634 |
strides=(1, 2),
|
635 |
upsample=True,
|
636 |
noise=True,
|
637 |
emb=inp1,
|
638 |
-
|
639 |
)
|
|
|
640 |
g4 = self.conv_util_gen(
|
641 |
g4,
|
642 |
-
|
643 |
-
kernel_size=(1,
|
644 |
strides=(1, 1),
|
645 |
upsample=False,
|
646 |
noise=True,
|
647 |
emb=inp1,
|
648 |
-
|
649 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
650 |
g5 = self.conv_util_gen(
|
651 |
g4,
|
652 |
-
|
653 |
kernel_size=(1, 4),
|
654 |
strides=(1, 2),
|
655 |
upsample=True,
|
656 |
noise=True,
|
657 |
emb=tf.expand_dims(tf.cast(inpb, dtype=self.args.datatype), -3),
|
|
|
658 |
)
|
659 |
|
660 |
gf = tf.keras.layers.Conv2D(
|
661 |
-
dim,
|
662 |
-
kernel_size=(1, 1),
|
663 |
-
strides=(1, 1),
|
664 |
-
kernel_initializer=self.init,
|
665 |
-
padding="same",
|
666 |
-
activation="tanh",
|
667 |
)(g5)
|
668 |
|
669 |
gfls = tf.split(gf, 2, 0)
|
@@ -671,7 +625,7 @@ class Models_functions:
|
|
671 |
|
672 |
gf = tf.cast(gf, tf.float32)
|
673 |
|
674 |
-
return Model(inpf, gf, name="GEN")
|
675 |
|
676 |
# Load past models from path to resume training or test
|
677 |
def load(self, path, load_dec=False):
|
@@ -681,12 +635,13 @@ class Models_functions:
|
|
681 |
dec = self.build_decoder()
|
682 |
enc2 = self.build_encoder2()
|
683 |
dec2 = self.build_decoder2()
|
684 |
-
critic_rec = self.build_critic_rec()
|
685 |
gen_ema = self.build_generator()
|
686 |
|
|
|
|
|
687 |
if self.args.mixed_precision:
|
688 |
-
opt_disc = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.
|
689 |
-
opt_dec = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.
|
690 |
else:
|
691 |
opt_disc = tf.keras.optimizers.Adam(0.0001, 0.9)
|
692 |
opt_dec = tf.keras.optimizers.Adam(0.0001, 0.9)
|
@@ -694,9 +649,11 @@ class Models_functions:
|
|
694 |
if load_dec:
|
695 |
dec.load_weights(self.args.dec_path + "/dec.h5")
|
696 |
dec2.load_weights(self.args.dec_path + "/dec2.h5")
|
|
|
|
|
697 |
|
698 |
else:
|
699 |
-
grad_vars = critic.trainable_weights
|
700 |
zero_grads = [tf.zeros_like(w) for w in grad_vars]
|
701 |
opt_disc.apply_gradients(zip(zero_grads, grad_vars))
|
702 |
|
@@ -707,16 +664,15 @@ class Models_functions:
|
|
707 |
if not self.args.testing:
|
708 |
opt_disc.set_weights(np.load(path + "/opt_disc.npy", allow_pickle=True))
|
709 |
opt_dec.set_weights(np.load(path + "/opt_dec.npy", allow_pickle=True))
|
710 |
-
|
711 |
-
if not self.args.testing:
|
712 |
critic.load_weights(path + "/critic.h5")
|
713 |
gen.load_weights(path + "/gen.h5")
|
714 |
-
|
715 |
-
|
716 |
-
critic_rec.load_weights(path + "/critic_rec.h5")
|
717 |
gen_ema.load_weights(path + "/gen_ema.h5")
|
718 |
-
dec.load_weights(
|
719 |
-
dec2.load_weights(
|
|
|
|
|
720 |
|
721 |
return (
|
722 |
critic,
|
@@ -725,9 +681,9 @@ class Models_functions:
|
|
725 |
dec,
|
726 |
enc2,
|
727 |
dec2,
|
728 |
-
critic_rec,
|
729 |
gen_ema,
|
730 |
[opt_dec, opt_disc],
|
|
|
731 |
)
|
732 |
|
733 |
def build(self):
|
@@ -737,18 +693,19 @@ class Models_functions:
|
|
737 |
dec = self.build_decoder()
|
738 |
enc2 = self.build_encoder2()
|
739 |
dec2 = self.build_decoder2()
|
740 |
-
critic_rec = self.build_critic_rec()
|
741 |
gen_ema = self.build_generator()
|
742 |
|
|
|
|
|
743 |
gen_ema = tf.keras.models.clone_model(gen)
|
744 |
gen_ema.set_weights(gen.get_weights())
|
745 |
|
746 |
if self.args.mixed_precision:
|
747 |
-
opt_disc = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.
|
748 |
-
opt_dec = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.
|
749 |
else:
|
750 |
-
opt_disc = tf.keras.optimizers.Adam(0.0001, 0.
|
751 |
-
opt_dec = tf.keras.optimizers.Adam(0.0001, 0.
|
752 |
|
753 |
return (
|
754 |
critic,
|
@@ -757,9 +714,9 @@ class Models_functions:
|
|
757 |
dec,
|
758 |
enc2,
|
759 |
dec2,
|
760 |
-
critic_rec,
|
761 |
gen_ema,
|
762 |
[opt_dec, opt_disc],
|
|
|
763 |
)
|
764 |
|
765 |
def get_networks(self):
|
@@ -767,65 +724,60 @@ class Models_functions:
|
|
767 |
critic,
|
768 |
gen,
|
769 |
enc,
|
770 |
-
|
771 |
enc2,
|
772 |
-
|
773 |
-
|
774 |
-
gen_ema_techno,
|
775 |
[opt_dec, opt_disc],
|
776 |
-
|
777 |
-
|
|
|
778 |
|
779 |
(
|
780 |
critic,
|
781 |
gen,
|
782 |
enc,
|
783 |
-
|
784 |
enc2,
|
785 |
-
|
786 |
-
|
787 |
-
gen_ema_classical,
|
788 |
[opt_dec, opt_disc],
|
789 |
-
|
790 |
-
|
|
|
791 |
|
792 |
-
|
793 |
critic,
|
794 |
gen,
|
795 |
enc,
|
796 |
-
|
797 |
enc2,
|
798 |
-
|
799 |
-
|
800 |
-
gen_ema_classical,
|
801 |
[opt_dec, opt_disc],
|
802 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
803 |
|
804 |
def initialize_networks(self):
|
805 |
|
806 |
-
|
807 |
-
critic,
|
808 |
-
gen,
|
809 |
-
enc,
|
810 |
-
|
811 |
-
enc2,
|
812 |
-
dec2_classical,
|
813 |
-
critic_rec,
|
814 |
-
gen_ema_classical,
|
815 |
-
[opt_dec, opt_disc],
|
816 |
-
] = self.get_networks()
|
817 |
|
818 |
-
print(f"
|
819 |
-
print(f"
|
820 |
|
821 |
-
return
|
822 |
-
critic,
|
823 |
-
gen,
|
824 |
-
enc,
|
825 |
-
|
826 |
-
enc2,
|
827 |
-
dec2_classical,
|
828 |
-
critic_rec,
|
829 |
-
gen_ema_classical,
|
830 |
-
[opt_dec, opt_disc],
|
831 |
-
]
|
|
|
1 |
import numpy as np
|
2 |
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from tensorflow.python.keras.utils.layer_utils import count_params
|
4 |
|
5 |
+
from layers import AddNoise
|
6 |
|
7 |
|
8 |
class Models_functions:
|
9 |
def __init__(self, args):
|
10 |
|
11 |
self.args = args
|
12 |
+
|
13 |
if self.args.mixed_precision:
|
14 |
+
self.mixed_precision = tf.keras.mixed_precision
|
15 |
+
self.policy = tf.keras.mixed_precision.Policy("mixed_float16")
|
16 |
+
tf.keras.mixed_precision.set_global_policy(self.policy)
|
17 |
self.init = tf.keras.initializers.he_uniform()
|
18 |
|
19 |
def conv_util(
|
20 |
+
self, inp, filters, kernel_size=(1, 3), strides=(1, 1), noise=False, upsample=False, padding="same", bnorm=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
):
|
22 |
|
23 |
x = inp
|
24 |
|
25 |
+
bias = True
|
26 |
+
if bnorm:
|
27 |
+
bias = False
|
28 |
+
|
29 |
if upsample:
|
30 |
x = tf.keras.layers.Conv2DTranspose(
|
31 |
filters,
|
|
|
34 |
activation="linear",
|
35 |
padding=padding,
|
36 |
kernel_initializer=self.init,
|
37 |
+
use_bias=bias,
|
38 |
)(x)
|
39 |
else:
|
40 |
x = tf.keras.layers.Conv2D(
|
|
|
44 |
activation="linear",
|
45 |
padding=padding,
|
46 |
kernel_initializer=self.init,
|
47 |
+
use_bias=bias,
|
48 |
)(x)
|
49 |
|
50 |
if noise:
|
51 |
+
x = AddNoise(self.args.datatype)(x)
|
52 |
|
53 |
+
if bnorm:
|
54 |
x = tf.keras.layers.BatchNormalization()(x)
|
55 |
|
56 |
x = tf.keras.activations.swish(x)
|
57 |
|
58 |
return x
|
59 |
|
60 |
+
def pixel_shuffle(self, x, factor=2):
|
61 |
+
bs_dim, h_dim, w_dim, c_dim = tf.shape(x)[0], x.shape[1], x.shape[2], x.shape[3]
|
62 |
+
x = tf.reshape(x, [bs_dim, h_dim, w_dim, c_dim // factor, factor])
|
63 |
+
x = tf.transpose(x, [0, 1, 2, 4, 3])
|
64 |
+
return tf.reshape(x, [bs_dim, h_dim, w_dim * factor, c_dim // factor])
|
65 |
+
|
66 |
+
def adain(self, x, emb, name):
|
67 |
emb = tf.keras.layers.Conv2D(
|
68 |
x.shape[-1],
|
69 |
kernel_size=(1, 1),
|
|
|
72 |
padding="same",
|
73 |
kernel_initializer=self.init,
|
74 |
use_bias=True,
|
75 |
+
name=name,
|
76 |
)(emb)
|
77 |
+
x = x / (tf.math.reduce_std(x, -2, keepdims=True) + 1e-5)
|
78 |
return x * emb
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def conv_util_gen(
|
81 |
self,
|
82 |
inp,
|
|
|
87 |
upsample=False,
|
88 |
emb=None,
|
89 |
se1=None,
|
90 |
+
name="0",
|
91 |
):
|
92 |
|
93 |
x = inp
|
|
|
101 |
padding="same",
|
102 |
kernel_initializer=self.init,
|
103 |
use_bias=True,
|
104 |
+
name=name + "c",
|
105 |
)(x)
|
106 |
else:
|
107 |
x = tf.keras.layers.Conv2D(
|
|
|
112 |
padding="same",
|
113 |
kernel_initializer=self.init,
|
114 |
use_bias=True,
|
115 |
+
name=name + "c",
|
116 |
)(x)
|
117 |
|
118 |
if noise:
|
119 |
+
x = AddNoise(self.args.datatype, name=name + "r")(x)
|
120 |
|
121 |
if emb is not None:
|
122 |
+
x = self.adain(x, emb, name=name + "ai")
|
123 |
else:
|
124 |
+
x = tf.keras.layers.BatchNormalization(name=name + "bn")(x)
|
|
|
|
|
125 |
|
126 |
+
x = tf.keras.activations.swish(x)
|
|
|
127 |
|
128 |
+
return x
|
129 |
|
130 |
+
def res_block_disc(self, inp, filters, kernel_size=(1, 3), kernel_size_2=None, strides=(1, 1), name="0"):
|
131 |
|
132 |
if kernel_size_2 is None:
|
133 |
kernel_size_2 = kernel_size
|
|
|
139 |
activation="linear",
|
140 |
padding="same",
|
141 |
kernel_initializer=self.init,
|
142 |
+
name=name + "c0",
|
143 |
)(inp)
|
144 |
x = tf.keras.layers.LeakyReLU(0.2)(x)
|
145 |
x = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * x
|
|
|
150 |
activation="linear",
|
151 |
padding="same",
|
152 |
kernel_initializer=self.init,
|
153 |
+
name=name + "c1",
|
154 |
)(x)
|
155 |
x = tf.keras.layers.LeakyReLU(0.2)(x)
|
156 |
x = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * x
|
|
|
167 |
padding="same",
|
168 |
kernel_initializer=self.init,
|
169 |
use_bias=False,
|
170 |
+
name=name + "c3",
|
171 |
)(inp)
|
172 |
|
173 |
return x + inp
|
174 |
|
175 |
def build_encoder2(self):
|
176 |
|
177 |
+
inpf = tf.keras.layers.Input((1, self.args.shape, self.args.hop // 4))
|
|
|
|
|
178 |
|
179 |
+
inpfls = tf.split(inpf, 8, -2)
|
180 |
inpb = tf.concat(inpfls, 0)
|
181 |
|
182 |
+
g0 = self.conv_util(inpb, self.args.hop, kernel_size=(1, 3), strides=(1, 1), padding="same", bnorm=False)
|
183 |
+
g1 = self.conv_util(
|
184 |
+
g0, self.args.hop + self.args.hop // 2, kernel_size=(1, 3), strides=(1, 2), padding="valid", bnorm=False
|
185 |
+
)
|
186 |
+
g2 = self.conv_util(
|
187 |
+
g1, self.args.hop + self.args.hop // 2, kernel_size=(1, 3), strides=(1, 1), padding="same", bnorm=False
|
188 |
+
)
|
189 |
+
g3 = self.conv_util(g2, self.args.hop * 2, kernel_size=(1, 3), strides=(1, 2), padding="valid", bnorm=False)
|
190 |
+
g4 = self.conv_util(g3, self.args.hop * 2, kernel_size=(1, 3), strides=(1, 1), padding="same", bnorm=False)
|
191 |
+
g5 = self.conv_util(g4, self.args.hop * 3, kernel_size=(1, 3), strides=(1, 1), padding="valid", bnorm=False)
|
192 |
+
g5 = self.conv_util(g5, self.args.hop * 3, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
|
193 |
|
194 |
g = tf.keras.layers.Conv2D(
|
195 |
+
self.args.latdepth,
|
196 |
kernel_size=(1, 1),
|
197 |
strides=1,
|
198 |
padding="valid",
|
|
|
201 |
activation="tanh",
|
202 |
)(g5)
|
203 |
|
204 |
+
gls = tf.split(g, 8, 0)
|
205 |
g = tf.concat(gls, -2)
|
206 |
gls = tf.split(g, 2, -2)
|
207 |
g = tf.concat(gls, 0)
|
208 |
|
209 |
gf = tf.cast(g, tf.float32)
|
|
|
210 |
|
211 |
+
return tf.keras.Model(inpf, gf, name="ENC2")
|
212 |
|
213 |
+
def build_decoder2(self):
|
|
|
214 |
|
215 |
+
inpf = tf.keras.layers.Input((1, self.args.shape // 32, self.args.latdepth))
|
216 |
|
217 |
g = inpf
|
218 |
|
219 |
+
g = self.conv_util(
|
220 |
+
g, self.args.hop * 3, kernel_size=(1, 3), strides=(1, 1), upsample=False, noise=True, bnorm=False
|
221 |
+
)
|
222 |
g = self.conv_util(
|
223 |
g,
|
224 |
+
self.args.hop * 2 + self.args.hop // 2,
|
225 |
kernel_size=(1, 4),
|
226 |
+
strides=(1, 2),
|
227 |
+
upsample=True,
|
228 |
+
noise=True,
|
229 |
+
bnorm=False,
|
230 |
+
)
|
231 |
+
g = self.conv_util(
|
232 |
+
g,
|
233 |
+
self.args.hop * 2 + self.args.hop // 2,
|
234 |
+
kernel_size=(1, 3),
|
235 |
strides=(1, 1),
|
236 |
upsample=False,
|
237 |
noise=True,
|
238 |
+
bnorm=False,
|
239 |
+
)
|
240 |
+
g = self.conv_util(
|
241 |
+
g, self.args.hop * 2, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
|
242 |
+
)
|
243 |
+
g = self.conv_util(
|
244 |
+
g, self.args.hop * 2, kernel_size=(1, 3), strides=(1, 1), upsample=False, noise=True, bnorm=False
|
245 |
)
|
246 |
g = self.conv_util(
|
247 |
g,
|
248 |
+
self.args.hop + self.args.hop // 2,
|
249 |
kernel_size=(1, 4),
|
250 |
strides=(1, 2),
|
251 |
upsample=True,
|
252 |
noise=True,
|
253 |
+
bnorm=False,
|
254 |
)
|
255 |
+
g = self.conv_util(g, self.args.hop, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False)
|
|
|
|
|
256 |
|
257 |
gf = tf.keras.layers.Conv2D(
|
258 |
+
self.args.hop // 4, kernel_size=(1, 1), strides=1, padding="same", kernel_initializer=self.init, name="cout"
|
|
|
|
|
|
|
|
|
|
|
259 |
)(g)
|
260 |
|
261 |
gfls = tf.split(gf, 2, 0)
|
|
|
263 |
|
264 |
gf = tf.cast(gf, tf.float32)
|
265 |
|
266 |
+
return tf.keras.Model(inpf, gf, name="DEC2")
|
267 |
|
268 |
def build_encoder(self):
|
269 |
|
270 |
dim = ((4 * self.args.hop) // 2) + 1
|
271 |
|
272 |
+
inpf = tf.keras.layers.Input((dim, self.args.shape, 1))
|
273 |
|
274 |
ginp = tf.transpose(inpf, [0, 3, 2, 1])
|
275 |
|
276 |
+
g0 = self.conv_util(ginp, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
|
277 |
+
g1 = self.conv_util(g0, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
|
278 |
+
g2 = self.conv_util(g1, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
|
279 |
+
g4 = self.conv_util(g2, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
|
280 |
+
g5 = self.conv_util(g4, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
g = tf.keras.layers.Conv2D(
|
283 |
+
self.args.hop // 4, kernel_size=(1, 1), strides=1, padding="valid", kernel_initializer=self.init
|
284 |
+
)(g5)
|
285 |
+
|
286 |
+
g = tf.keras.activations.tanh(g)
|
287 |
+
|
288 |
+
gls = tf.split(g, 2, -2)
|
289 |
+
g = tf.concat(gls, 0)
|
290 |
|
291 |
+
gf = tf.cast(g, tf.float32)
|
|
|
292 |
|
293 |
+
return tf.keras.Model(inpf, gf, name="ENC")
|
|
|
294 |
|
295 |
def build_decoder(self):
|
296 |
|
297 |
dim = ((4 * self.args.hop) // 2) + 1
|
298 |
|
299 |
+
inpf = tf.keras.layers.Input((1, self.args.shape // 2, self.args.hop // 4))
|
300 |
|
301 |
g = inpf
|
302 |
|
303 |
+
g0 = self.conv_util(g, self.args.hop * 3, kernel_size=(1, 3), strides=(1, 1), noise=True, bnorm=False)
|
304 |
+
g1 = self.conv_util(g0, self.args.hop * 3, kernel_size=(1, 3), strides=(1, 2), noise=True, bnorm=False)
|
305 |
+
g2 = self.conv_util(g1, self.args.hop * 2, kernel_size=(1, 3), strides=(1, 2), noise=True, bnorm=False)
|
306 |
+
g3 = self.conv_util(g2, self.args.hop, kernel_size=(1, 3), strides=(1, 2), noise=True, bnorm=False)
|
307 |
+
g = self.conv_util(g3, self.args.hop, kernel_size=(1, 3), strides=(1, 2), noise=True, bnorm=False)
|
308 |
|
309 |
+
g33 = self.conv_util(
|
310 |
+
g, self.args.hop, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
|
|
|
|
|
|
|
|
|
|
|
311 |
)
|
312 |
+
g22 = self.conv_util(
|
313 |
+
g3, self.args.hop * 2, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
|
|
|
|
|
|
|
|
|
314 |
)
|
315 |
+
g11 = self.conv_util(
|
316 |
+
g22 + g2, self.args.hop * 3, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
|
317 |
+
)
|
318 |
+
g00 = self.conv_util(
|
319 |
+
g11 + g1, self.args.hop * 3, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
|
|
|
|
|
|
|
320 |
)
|
321 |
+
|
322 |
+
g = tf.keras.layers.Conv2D(
|
323 |
+
dim, kernel_size=(1, 1), strides=(1, 1), kernel_initializer=self.init, padding="same"
|
324 |
+
)(g00 + g0)
|
325 |
+
gf = tf.clip_by_value(g, -1.0, 1.0)
|
326 |
+
|
327 |
g = self.conv_util(
|
328 |
+
g22, self.args.hop * 3, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
|
|
|
|
|
|
|
|
|
|
|
329 |
)
|
330 |
g = self.conv_util(
|
331 |
+
g + g11, self.args.hop * 3, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
|
|
|
|
|
|
|
|
|
|
|
332 |
)
|
333 |
+
g = tf.keras.layers.Conv2D(
|
334 |
+
dim, kernel_size=(1, 1), strides=(1, 1), kernel_initializer=self.init, padding="same"
|
335 |
+
)(g + g00)
|
336 |
+
pf = tf.clip_by_value(g, -1.0, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
gfls = tf.split(gf, self.args.shape // self.args.window, 0)
|
339 |
gf = tf.concat(gfls, -2)
|
|
|
347 |
s = tf.cast(tf.squeeze(s, -1), tf.float32)
|
348 |
p = tf.cast(tf.squeeze(p, -1), tf.float32)
|
349 |
|
350 |
+
return tf.keras.Model(inpf, [s, p], name="DEC")
|
351 |
|
352 |
def build_critic(self):
|
353 |
|
354 |
+
sinp = tf.keras.layers.Input(shape=(1, self.args.latlen, self.args.latdepth * 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
sf = tf.keras.layers.Conv2D(
|
357 |
+
self.args.base_channels * 3,
|
358 |
+
kernel_size=(1, 4),
|
359 |
strides=(1, 2),
|
360 |
activation="linear",
|
361 |
padding="same",
|
362 |
kernel_initializer=self.init,
|
363 |
+
name="1c",
|
364 |
+
)(sinp)
|
365 |
sf = tf.keras.layers.LeakyReLU(0.2)(sf)
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
+
sf = self.res_block_disc(sf, self.args.base_channels * 4, kernel_size=(1, 4), strides=(1, 2), name="2")
|
368 |
|
369 |
+
sf = self.res_block_disc(sf, self.args.base_channels * 5, kernel_size=(1, 4), strides=(1, 2), name="3")
|
|
|
370 |
|
371 |
+
sf = self.res_block_disc(sf, self.args.base_channels * 6, kernel_size=(1, 4), strides=(1, 2), name="4")
|
372 |
|
373 |
+
sf = self.res_block_disc(sf, self.args.base_channels * 7, kernel_size=(1, 4), strides=(1, 2), name="5")
|
374 |
|
375 |
+
if not self.args.small:
|
376 |
+
sf = self.res_block_disc(
|
377 |
+
sf, self.args.base_channels * 7, kernel_size=(1, 4), strides=(1, 2), kernel_size_2=(1, 1), name="6"
|
378 |
+
)
|
379 |
|
380 |
+
sf = tf.keras.layers.Conv2D(
|
381 |
+
self.args.base_channels * 7,
|
382 |
+
kernel_size=(1, 3),
|
383 |
+
strides=(1, 1),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
activation="linear",
|
385 |
padding="same",
|
386 |
kernel_initializer=self.init,
|
387 |
+
name="7c",
|
388 |
)(sf)
|
389 |
sf = tf.keras.layers.LeakyReLU(0.2)(sf)
|
390 |
|
391 |
+
gf = tf.keras.layers.Dense(1, activation="linear", use_bias=True, kernel_initializer=self.init, name="7d")(
|
392 |
+
tf.keras.layers.Flatten()(sf)
|
393 |
+
)
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
gf = tf.cast(gf, tf.float32)
|
396 |
|
397 |
+
return tf.keras.Model(sinp, gf, name="C")
|
398 |
|
399 |
def build_generator(self):
|
400 |
|
401 |
dim = self.args.latdepth * 2
|
402 |
|
403 |
+
inpf = tf.keras.layers.Input((self.args.latlen, self.args.latdepth * 2))
|
404 |
|
405 |
inpfls = tf.split(inpf, 2, -2)
|
406 |
inpb = tf.concat(inpfls, 0)
|
|
|
411 |
inp3 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp2)
|
412 |
inp4 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp3)
|
413 |
inp5 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp4)
|
414 |
+
if not self.args.small:
|
415 |
+
inp6 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp5)
|
416 |
|
417 |
+
if not self.args.small:
|
418 |
+
g = tf.keras.layers.Dense(
|
419 |
+
4 * (self.args.base_channels * 7),
|
420 |
+
activation="linear",
|
421 |
+
use_bias=True,
|
422 |
+
kernel_initializer=self.init,
|
423 |
+
name="00d",
|
424 |
+
)(tf.keras.layers.Flatten()(inp6))
|
425 |
+
g = tf.keras.layers.Reshape((1, 4, self.args.base_channels * 7))(g)
|
426 |
+
g = AddNoise(self.args.datatype, name="00n")(g)
|
427 |
+
g = self.adain(g, inp5, name="00ai")
|
428 |
+
g = tf.keras.activations.swish(g)
|
429 |
+
else:
|
430 |
+
g = tf.keras.layers.Dense(
|
431 |
+
4 * (self.args.base_channels * 7),
|
432 |
+
activation="linear",
|
433 |
+
use_bias=True,
|
434 |
+
kernel_initializer=self.init,
|
435 |
+
name="00d",
|
436 |
+
)(tf.keras.layers.Flatten()(inp5))
|
437 |
+
g = tf.keras.layers.Reshape((1, 4, self.args.base_channels * 7))(g)
|
438 |
+
g = AddNoise(self.args.datatype, name="00n")(g)
|
439 |
+
g = self.adain(g, inp4, name="00ai")
|
440 |
+
g = tf.keras.activations.swish(g)
|
441 |
+
|
442 |
+
if not self.args.small:
|
443 |
+
g1 = self.conv_util_gen(
|
444 |
+
g,
|
445 |
+
self.args.base_channels * 6,
|
446 |
+
kernel_size=(1, 4),
|
447 |
+
strides=(1, 2),
|
448 |
+
upsample=True,
|
449 |
+
noise=True,
|
450 |
+
emb=inp4,
|
451 |
+
name="0",
|
452 |
+
)
|
453 |
+
g1 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g1
|
454 |
+
g1 = self.conv_util_gen(
|
455 |
+
g1,
|
456 |
+
self.args.base_channels * 6,
|
457 |
+
kernel_size=(1, 4),
|
458 |
+
strides=(1, 1),
|
459 |
+
upsample=False,
|
460 |
+
noise=True,
|
461 |
+
emb=inp4,
|
462 |
+
name="1",
|
463 |
+
)
|
464 |
+
g1 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g1
|
465 |
+
g1 = g1 + tf.keras.layers.Conv2D(
|
466 |
+
g1.shape[-1],
|
467 |
+
kernel_size=(1, 1),
|
468 |
+
strides=1,
|
469 |
+
activation="linear",
|
470 |
+
padding="same",
|
471 |
+
kernel_initializer=self.init,
|
472 |
+
use_bias=True,
|
473 |
+
name="res1c",
|
474 |
+
)(self.pixel_shuffle(g))
|
475 |
+
else:
|
476 |
+
g1 = self.conv_util_gen(
|
477 |
+
g,
|
478 |
+
self.args.base_channels * 6,
|
479 |
+
kernel_size=(1, 1),
|
480 |
+
strides=(1, 1),
|
481 |
+
upsample=False,
|
482 |
+
noise=True,
|
483 |
+
emb=inp4,
|
484 |
+
name="0_small",
|
485 |
+
)
|
486 |
+
g1 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g1
|
487 |
+
g1 = self.conv_util_gen(
|
488 |
+
g1,
|
489 |
+
self.args.base_channels * 6,
|
490 |
+
kernel_size=(1, 1),
|
491 |
+
strides=(1, 1),
|
492 |
+
upsample=False,
|
493 |
+
noise=True,
|
494 |
+
emb=inp4,
|
495 |
+
name="1_small",
|
496 |
+
)
|
497 |
+
g1 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g1
|
498 |
+
g1 = g1 + tf.keras.layers.Conv2D(
|
499 |
+
g1.shape[-1],
|
500 |
+
kernel_size=(1, 1),
|
501 |
+
strides=1,
|
502 |
+
activation="linear",
|
503 |
+
padding="same",
|
504 |
+
kernel_initializer=self.init,
|
505 |
+
use_bias=True,
|
506 |
+
name="res1c_small",
|
507 |
+
)(g)
|
508 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
g2 = self.conv_util_gen(
|
510 |
g1,
|
511 |
+
self.args.base_channels * 5,
|
512 |
kernel_size=(1, 4),
|
513 |
strides=(1, 2),
|
514 |
upsample=True,
|
515 |
noise=True,
|
516 |
emb=inp3,
|
517 |
+
name="2",
|
518 |
)
|
519 |
+
g2 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g2
|
520 |
+
g2 = self.conv_util_gen(
|
521 |
g2,
|
522 |
+
self.args.base_channels * 5,
|
523 |
+
kernel_size=(1, 4),
|
524 |
strides=(1, 1),
|
525 |
upsample=False,
|
526 |
noise=True,
|
527 |
emb=inp3,
|
528 |
+
name="3",
|
529 |
)
|
530 |
+
g2 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g2
|
531 |
+
g2 = g2 + tf.keras.layers.Conv2D(
|
532 |
+
g2.shape[-1],
|
533 |
+
kernel_size=(1, 1),
|
534 |
+
strides=1,
|
535 |
+
activation="linear",
|
536 |
+
padding="same",
|
537 |
+
kernel_initializer=self.init,
|
538 |
+
use_bias=True,
|
539 |
+
name="res2c",
|
540 |
+
)(self.pixel_shuffle(g1))
|
541 |
+
|
542 |
g3 = self.conv_util_gen(
|
543 |
+
g2,
|
544 |
+
self.args.base_channels * 4,
|
545 |
kernel_size=(1, 4),
|
546 |
strides=(1, 2),
|
547 |
upsample=True,
|
548 |
noise=True,
|
549 |
emb=inp2,
|
550 |
+
name="4",
|
551 |
)
|
552 |
+
g3 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g3
|
553 |
g3 = self.conv_util_gen(
|
554 |
g3,
|
555 |
+
self.args.base_channels * 4,
|
556 |
+
kernel_size=(1, 4),
|
557 |
strides=(1, 1),
|
558 |
upsample=False,
|
559 |
noise=True,
|
560 |
emb=inp2,
|
561 |
+
name="5",
|
562 |
)
|
563 |
+
g3 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g3
|
564 |
+
g3 = g3 + tf.keras.layers.Conv2D(
|
565 |
+
g3.shape[-1],
|
566 |
+
kernel_size=(1, 1),
|
567 |
+
strides=1,
|
568 |
+
activation="linear",
|
569 |
+
padding="same",
|
570 |
+
kernel_initializer=self.init,
|
571 |
+
use_bias=True,
|
572 |
+
name="res3c",
|
573 |
+
)(self.pixel_shuffle(g2))
|
574 |
+
|
575 |
g4 = self.conv_util_gen(
|
576 |
g3,
|
577 |
+
self.args.base_channels * 3,
|
578 |
kernel_size=(1, 4),
|
579 |
strides=(1, 2),
|
580 |
upsample=True,
|
581 |
noise=True,
|
582 |
emb=inp1,
|
583 |
+
name="6",
|
584 |
)
|
585 |
+
g4 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g4
|
586 |
g4 = self.conv_util_gen(
|
587 |
g4,
|
588 |
+
self.args.base_channels * 3,
|
589 |
+
kernel_size=(1, 4),
|
590 |
strides=(1, 1),
|
591 |
upsample=False,
|
592 |
noise=True,
|
593 |
emb=inp1,
|
594 |
+
name="7",
|
595 |
)
|
596 |
+
g4 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g4
|
597 |
+
g4 = g4 + tf.keras.layers.Conv2D(
|
598 |
+
g4.shape[-1],
|
599 |
+
kernel_size=(1, 1),
|
600 |
+
strides=1,
|
601 |
+
activation="linear",
|
602 |
+
padding="same",
|
603 |
+
kernel_initializer=self.init,
|
604 |
+
use_bias=True,
|
605 |
+
name="res4c",
|
606 |
+
)(self.pixel_shuffle(g3))
|
607 |
+
|
608 |
g5 = self.conv_util_gen(
|
609 |
g4,
|
610 |
+
self.args.base_channels * 2,
|
611 |
kernel_size=(1, 4),
|
612 |
strides=(1, 2),
|
613 |
upsample=True,
|
614 |
noise=True,
|
615 |
emb=tf.expand_dims(tf.cast(inpb, dtype=self.args.datatype), -3),
|
616 |
+
name="8",
|
617 |
)
|
618 |
|
619 |
gf = tf.keras.layers.Conv2D(
|
620 |
+
dim, kernel_size=(1, 4), strides=(1, 1), kernel_initializer=self.init, padding="same", name="9c"
|
|
|
|
|
|
|
|
|
|
|
621 |
)(g5)
|
622 |
|
623 |
gfls = tf.split(gf, 2, 0)
|
|
|
625 |
|
626 |
gf = tf.cast(gf, tf.float32)
|
627 |
|
628 |
+
return tf.keras.Model(inpf, gf, name="GEN")
|
629 |
|
630 |
# Load past models from path to resume training or test
|
631 |
def load(self, path, load_dec=False):
|
|
|
635 |
dec = self.build_decoder()
|
636 |
enc2 = self.build_encoder2()
|
637 |
dec2 = self.build_decoder2()
|
|
|
638 |
gen_ema = self.build_generator()
|
639 |
|
640 |
+
switch = tf.Variable(-1.0, dtype=tf.float32)
|
641 |
+
|
642 |
if self.args.mixed_precision:
|
643 |
+
opt_disc = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.5))
|
644 |
+
opt_dec = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.5))
|
645 |
else:
|
646 |
opt_disc = tf.keras.optimizers.Adam(0.0001, 0.9)
|
647 |
opt_dec = tf.keras.optimizers.Adam(0.0001, 0.9)
|
|
|
649 |
if load_dec:
|
650 |
dec.load_weights(self.args.dec_path + "/dec.h5")
|
651 |
dec2.load_weights(self.args.dec_path + "/dec2.h5")
|
652 |
+
enc.load_weights(self.args.dec_path + "/enc.h5")
|
653 |
+
enc2.load_weights(self.args.dec_path + "/enc2.h5")
|
654 |
|
655 |
else:
|
656 |
+
grad_vars = critic.trainable_weights
|
657 |
zero_grads = [tf.zeros_like(w) for w in grad_vars]
|
658 |
opt_disc.apply_gradients(zip(zero_grads, grad_vars))
|
659 |
|
|
|
664 |
if not self.args.testing:
|
665 |
opt_disc.set_weights(np.load(path + "/opt_disc.npy", allow_pickle=True))
|
666 |
opt_dec.set_weights(np.load(path + "/opt_dec.npy", allow_pickle=True))
|
|
|
|
|
667 |
critic.load_weights(path + "/critic.h5")
|
668 |
gen.load_weights(path + "/gen.h5")
|
669 |
+
switch = tf.Variable(float(np.load(path + "/switch.npy", allow_pickle=True)), dtype=tf.float32)
|
670 |
+
|
|
|
671 |
gen_ema.load_weights(path + "/gen_ema.h5")
|
672 |
+
dec.load_weights(self.args.dec_path + "/dec.h5")
|
673 |
+
dec2.load_weights(self.args.dec_path + "/dec2.h5")
|
674 |
+
enc.load_weights(self.args.dec_path + "/enc.h5")
|
675 |
+
enc2.load_weights(self.args.dec_path + "/enc2.h5")
|
676 |
|
677 |
return (
|
678 |
critic,
|
|
|
681 |
dec,
|
682 |
enc2,
|
683 |
dec2,
|
|
|
684 |
gen_ema,
|
685 |
[opt_dec, opt_disc],
|
686 |
+
switch,
|
687 |
)
|
688 |
|
689 |
def build(self):
|
|
|
693 |
dec = self.build_decoder()
|
694 |
enc2 = self.build_encoder2()
|
695 |
dec2 = self.build_decoder2()
|
|
|
696 |
gen_ema = self.build_generator()
|
697 |
|
698 |
+
switch = tf.Variable(-1.0, dtype=tf.float32)
|
699 |
+
|
700 |
gen_ema = tf.keras.models.clone_model(gen)
|
701 |
gen_ema.set_weights(gen.get_weights())
|
702 |
|
703 |
if self.args.mixed_precision:
|
704 |
+
opt_disc = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.5))
|
705 |
+
opt_dec = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.5))
|
706 |
else:
|
707 |
+
opt_disc = tf.keras.optimizers.Adam(0.0001, 0.5)
|
708 |
+
opt_dec = tf.keras.optimizers.Adam(0.0001, 0.5)
|
709 |
|
710 |
return (
|
711 |
critic,
|
|
|
714 |
dec,
|
715 |
enc2,
|
716 |
dec2,
|
|
|
717 |
gen_ema,
|
718 |
[opt_dec, opt_disc],
|
719 |
+
switch,
|
720 |
)
|
721 |
|
722 |
def get_networks(self):
|
|
|
724 |
critic,
|
725 |
gen,
|
726 |
enc,
|
727 |
+
dec,
|
728 |
enc2,
|
729 |
+
dec2,
|
730 |
+
gen_ema_1,
|
|
|
731 |
[opt_dec, opt_disc],
|
732 |
+
switch,
|
733 |
+
) = self.load(self.args.load_path_1, load_dec=False)
|
734 |
+
print(f"Networks loaded from {self.args.load_path_1}")
|
735 |
|
736 |
(
|
737 |
critic,
|
738 |
gen,
|
739 |
enc,
|
740 |
+
dec,
|
741 |
enc2,
|
742 |
+
dec2,
|
743 |
+
gen_ema_2,
|
|
|
744 |
[opt_dec, opt_disc],
|
745 |
+
switch,
|
746 |
+
) = self.load(self.args.load_path_2, load_dec=False)
|
747 |
+
print(f"Networks loaded from {self.args.load_path_2}")
|
748 |
|
749 |
+
(
|
750 |
critic,
|
751 |
gen,
|
752 |
enc,
|
753 |
+
dec,
|
754 |
enc2,
|
755 |
+
dec2,
|
756 |
+
gen_ema_3,
|
|
|
757 |
[opt_dec, opt_disc],
|
758 |
+
switch,
|
759 |
+
) = self.load(self.args.load_path_3, load_dec=False)
|
760 |
+
print(f"Networks loaded from {self.args.load_path_3}")
|
761 |
+
|
762 |
+
return (
|
763 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema_1, [opt_dec, opt_disc], switch),
|
764 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema_2, [opt_dec, opt_disc], switch),
|
765 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema_3, [opt_dec, opt_disc], switch),
|
766 |
+
)
|
767 |
|
768 |
def initialize_networks(self):
|
769 |
|
770 |
+
(
|
771 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema_1, [opt_dec, opt_disc], switch),
|
772 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema_2, [opt_dec, opt_disc], switch),
|
773 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema_3, [opt_dec, opt_disc], switch),
|
774 |
+
) = self.get_networks()
|
|
|
|
|
|
|
|
|
|
|
|
|
775 |
|
776 |
+
print(f"Critic params: {count_params(critic.trainable_variables)}")
|
777 |
+
print(f"Generator params: {count_params(gen.trainable_variables)}")
|
778 |
|
779 |
+
return (
|
780 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema_1, [opt_dec, opt_disc], switch),
|
781 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema_2, [opt_dec, opt_disc], switch),
|
782 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema_3, [opt_dec, opt_disc], switch),
|
783 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
musika.py → musika_test.py
RENAMED
@@ -1,7 +1,10 @@
|
|
|
|
|
|
|
|
|
|
1 |
from parse_test import parse_args
|
2 |
from models import Models_functions
|
3 |
from utils import Utils_functions
|
4 |
-
import os
|
5 |
|
6 |
if __name__ == "__main__":
|
7 |
|
@@ -10,8 +13,8 @@ if __name__ == "__main__":
|
|
10 |
|
11 |
# initialize networks
|
12 |
M = Models_functions(args)
|
13 |
-
|
14 |
|
15 |
# test musika
|
16 |
U = Utils_functions(args)
|
17 |
-
U.render_gradio(
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
4 |
+
|
5 |
from parse_test import parse_args
|
6 |
from models import Models_functions
|
7 |
from utils import Utils_functions
|
|
|
8 |
|
9 |
if __name__ == "__main__":
|
10 |
|
|
|
13 |
|
14 |
# initialize networks
|
15 |
M = Models_functions(args)
|
16 |
+
models_ls_1, models_ls_2, models_ls_3 = M.get_networks()
|
17 |
|
18 |
# test musika
|
19 |
U = Utils_functions(args)
|
20 |
+
U.render_gradio(models_ls_1, models_ls_2, models_ls_3, train=False)
|
parse_test.py
CHANGED
@@ -17,6 +17,17 @@ class EasyDict(dict):
|
|
17 |
del self[name]
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def params_args(args):
|
21 |
parser = argparse.ArgumentParser()
|
22 |
|
@@ -35,14 +46,14 @@ def params_args(args):
|
|
35 |
parser.add_argument(
|
36 |
"--sr",
|
37 |
type=int,
|
38 |
-
default=
|
39 |
help="Sampling Rate",
|
40 |
)
|
41 |
parser.add_argument(
|
42 |
-
"--
|
43 |
-
type=
|
44 |
-
default=
|
45 |
-
help="
|
46 |
)
|
47 |
parser.add_argument(
|
48 |
"--latdepth",
|
@@ -50,6 +61,18 @@ def params_args(args):
|
|
50 |
default=64,
|
51 |
help="Depth of generated latent vectors",
|
52 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
parser.add_argument(
|
54 |
"--shape",
|
55 |
type=int,
|
@@ -64,55 +87,55 @@ def params_args(args):
|
|
64 |
)
|
65 |
parser.add_argument(
|
66 |
"--mu_rescale",
|
67 |
-
type=
|
68 |
default=-25.0,
|
69 |
help="Spectrogram mu used to normalize",
|
70 |
)
|
71 |
parser.add_argument(
|
72 |
"--sigma_rescale",
|
73 |
-
type=
|
74 |
default=75.0,
|
75 |
help="Spectrogram sigma used to normalize",
|
76 |
)
|
77 |
parser.add_argument(
|
78 |
-
"--
|
79 |
type=str,
|
80 |
default="checkpoints/techno/",
|
81 |
-
help="Path of pretrained networks weights
|
82 |
)
|
83 |
parser.add_argument(
|
84 |
-
"--
|
85 |
type=str,
|
86 |
-
default="checkpoints/
|
87 |
-
help="Path of pretrained networks weights
|
88 |
)
|
89 |
parser.add_argument(
|
90 |
-
"--
|
91 |
type=str,
|
92 |
-
default="checkpoints/
|
93 |
-
help="Path of pretrained
|
94 |
)
|
95 |
parser.add_argument(
|
96 |
-
"--
|
97 |
type=str,
|
98 |
-
default="checkpoints/
|
99 |
-
help="Path of pretrained decoders weights
|
100 |
)
|
101 |
parser.add_argument(
|
102 |
"--testing",
|
103 |
-
type=
|
104 |
default=True,
|
105 |
help="True if optimizers weight do not need to be loaded",
|
106 |
)
|
107 |
parser.add_argument(
|
108 |
"--cpu",
|
109 |
-
type=
|
110 |
default=False,
|
111 |
help="True if you wish to use cpu",
|
112 |
)
|
113 |
parser.add_argument(
|
114 |
"--mixed_precision",
|
115 |
-
type=
|
116 |
default=True,
|
117 |
help="True if your GPU supports mixed precision",
|
118 |
)
|
@@ -122,20 +145,28 @@ def params_args(args):
|
|
122 |
args.hop = tmp_args.hop
|
123 |
args.mel_bins = tmp_args.mel_bins
|
124 |
args.sr = tmp_args.sr
|
125 |
-
args.
|
126 |
args.latdepth = tmp_args.latdepth
|
|
|
|
|
127 |
args.shape = tmp_args.shape
|
128 |
args.window = tmp_args.window
|
129 |
args.mu_rescale = tmp_args.mu_rescale
|
130 |
args.sigma_rescale = tmp_args.sigma_rescale
|
131 |
-
args.
|
132 |
-
args.
|
133 |
-
args.
|
134 |
-
args.
|
135 |
args.testing = tmp_args.testing
|
136 |
args.cpu = tmp_args.cpu
|
137 |
args.mixed_precision = tmp_args.mixed_precision
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
print()
|
140 |
|
141 |
args.datatype = tf.float32
|
|
|
17 |
del self[name]
|
18 |
|
19 |
|
20 |
+
def str2bool(v):
|
21 |
+
if isinstance(v, bool):
|
22 |
+
return v
|
23 |
+
if v.lower() in ("yes", "true", "t", "y", "1"):
|
24 |
+
return True
|
25 |
+
elif v.lower() in ("no", "false", "f", "n", "0"):
|
26 |
+
return False
|
27 |
+
else:
|
28 |
+
raise argparse.ArgumentTypeError("Boolean value expected.")
|
29 |
+
|
30 |
+
|
31 |
def params_args(args):
|
32 |
parser = argparse.ArgumentParser()
|
33 |
|
|
|
46 |
parser.add_argument(
|
47 |
"--sr",
|
48 |
type=int,
|
49 |
+
default=44100,
|
50 |
help="Sampling Rate",
|
51 |
)
|
52 |
parser.add_argument(
|
53 |
+
"--small",
|
54 |
+
type=str2bool,
|
55 |
+
default=False,
|
56 |
+
help="If True, use model with shorter available context, useful for small datasets",
|
57 |
)
|
58 |
parser.add_argument(
|
59 |
"--latdepth",
|
|
|
61 |
default=64,
|
62 |
help="Depth of generated latent vectors",
|
63 |
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--coorddepth",
|
66 |
+
type=int,
|
67 |
+
default=64,
|
68 |
+
help="Dimension of latent coordinate and style random vectors",
|
69 |
+
)
|
70 |
+
parser.add_argument(
|
71 |
+
"--base_channels",
|
72 |
+
type=int,
|
73 |
+
default=128,
|
74 |
+
help="Base channels for generator and discriminator architectures",
|
75 |
+
)
|
76 |
parser.add_argument(
|
77 |
"--shape",
|
78 |
type=int,
|
|
|
87 |
)
|
88 |
parser.add_argument(
|
89 |
"--mu_rescale",
|
90 |
+
type=float,
|
91 |
default=-25.0,
|
92 |
help="Spectrogram mu used to normalize",
|
93 |
)
|
94 |
parser.add_argument(
|
95 |
"--sigma_rescale",
|
96 |
+
type=float,
|
97 |
default=75.0,
|
98 |
help="Spectrogram sigma used to normalize",
|
99 |
)
|
100 |
parser.add_argument(
|
101 |
+
"--load_path_1",
|
102 |
type=str,
|
103 |
default="checkpoints/techno/",
|
104 |
+
help="Path of pretrained networks weights 1",
|
105 |
)
|
106 |
parser.add_argument(
|
107 |
+
"--load_path_2",
|
108 |
type=str,
|
109 |
+
default="checkpoints/metal/",
|
110 |
+
help="Path of pretrained networks weights 2",
|
111 |
)
|
112 |
parser.add_argument(
|
113 |
+
"--load_path_3",
|
114 |
type=str,
|
115 |
+
default="checkpoints/misc/",
|
116 |
+
help="Path of pretrained networks weights 3",
|
117 |
)
|
118 |
parser.add_argument(
|
119 |
+
"--dec_path",
|
120 |
type=str,
|
121 |
+
default="checkpoints/ae/",
|
122 |
+
help="Path of pretrained decoders weights",
|
123 |
)
|
124 |
parser.add_argument(
|
125 |
"--testing",
|
126 |
+
type=str2bool,
|
127 |
default=True,
|
128 |
help="True if optimizers weight do not need to be loaded",
|
129 |
)
|
130 |
parser.add_argument(
|
131 |
"--cpu",
|
132 |
+
type=str2bool,
|
133 |
default=False,
|
134 |
help="True if you wish to use cpu",
|
135 |
)
|
136 |
parser.add_argument(
|
137 |
"--mixed_precision",
|
138 |
+
type=str2bool,
|
139 |
default=True,
|
140 |
help="True if your GPU supports mixed precision",
|
141 |
)
|
|
|
145 |
args.hop = tmp_args.hop
|
146 |
args.mel_bins = tmp_args.mel_bins
|
147 |
args.sr = tmp_args.sr
|
148 |
+
args.small = tmp_args.small
|
149 |
args.latdepth = tmp_args.latdepth
|
150 |
+
args.coorddepth = tmp_args.coorddepth
|
151 |
+
args.base_channels = tmp_args.base_channels
|
152 |
args.shape = tmp_args.shape
|
153 |
args.window = tmp_args.window
|
154 |
args.mu_rescale = tmp_args.mu_rescale
|
155 |
args.sigma_rescale = tmp_args.sigma_rescale
|
156 |
+
args.load_path_1 = tmp_args.load_path_1
|
157 |
+
args.load_path_2 = tmp_args.load_path_2
|
158 |
+
args.load_path_3 = tmp_args.load_path_3
|
159 |
+
args.dec_path = tmp_args.dec_path
|
160 |
args.testing = tmp_args.testing
|
161 |
args.cpu = tmp_args.cpu
|
162 |
args.mixed_precision = tmp_args.mixed_precision
|
163 |
|
164 |
+
if args.small:
|
165 |
+
args.latlen = 128
|
166 |
+
else:
|
167 |
+
args.latlen = 256
|
168 |
+
args.coordlen = (args.latlen // 2) * 3
|
169 |
+
|
170 |
print()
|
171 |
|
172 |
args.datatype = tf.float32
|
requirements.txt
CHANGED
@@ -1,20 +1,12 @@
|
|
1 |
# This file may be used to create an environment using:
|
2 |
# $ conda create --name <env> --file <this file>
|
3 |
# platform: linux-64
|
4 |
-
|
5 |
-
gradio==2.5.2
|
6 |
-
ipython==7.29.0
|
7 |
librosa==0.8.1
|
8 |
matplotlib==3.4.3
|
9 |
numpy==1.20.3
|
10 |
-
pillow==8.4.0
|
11 |
-
protobuf==3.20.1rc1
|
12 |
-
scikit-learn==1.0.1
|
13 |
scipy==1.7.1
|
14 |
-
|
15 |
-
|
16 |
-
tensorboard==2.7.0
|
17 |
-
tensorflow==2.7.0
|
18 |
-
tensorflow-addons==0.15.0
|
19 |
-
tensorflow-io==0.22.0
|
20 |
tqdm==4.62.3
|
|
|
|
1 |
# This file may be used to create an environment using:
|
2 |
# $ conda create --name <env> --file <this file>
|
3 |
# platform: linux-64
|
4 |
+
gradio==3.3.1
|
|
|
|
|
5 |
librosa==0.8.1
|
6 |
matplotlib==3.4.3
|
7 |
numpy==1.20.3
|
|
|
|
|
|
|
8 |
scipy==1.7.1
|
9 |
+
tensorboard==2.10.0
|
10 |
+
tensorflow==2.10.0
|
|
|
|
|
|
|
|
|
11 |
tqdm==4.62.3
|
12 |
+
pydub==0.25.1
|
utils.py
CHANGED
@@ -1,21 +1,13 @@
|
|
1 |
-
import io
|
2 |
import os
|
3 |
-
import random
|
4 |
import time
|
|
|
5 |
from glob import glob
|
6 |
-
|
7 |
-
import IPython
|
8 |
import librosa
|
9 |
import matplotlib.pyplot as plt
|
10 |
import numpy as np
|
11 |
-
import soundfile as sf
|
12 |
import tensorflow as tf
|
13 |
-
import tensorflow_io as tfio
|
14 |
-
|
15 |
-
from tensorflow.keras import mixed_precision
|
16 |
-
from tensorflow.keras.optimizers import Adam
|
17 |
from tensorflow.python.framework import random_seed
|
18 |
-
from tqdm import tqdm
|
19 |
import gradio as gr
|
20 |
from scipy.io.wavfile import write as write_wav
|
21 |
|
@@ -27,14 +19,18 @@ class Utils_functions:
|
|
27 |
|
28 |
melmat = tf.signal.linear_to_mel_weight_matrix(
|
29 |
num_mel_bins=args.mel_bins,
|
30 |
-
num_spectrogram_bins=(4 * args.hop) // 2 + 1,
|
31 |
sample_rate=args.sr,
|
32 |
lower_edge_hertz=0.0,
|
33 |
upper_edge_hertz=args.sr // 2,
|
34 |
)
|
35 |
mel_f = tf.convert_to_tensor(librosa.mel_frequencies(n_mels=args.mel_bins + 2, fmin=0.0, fmax=args.sr // 2))
|
36 |
enorm = tf.cast(
|
37 |
-
tf.expand_dims(
|
|
|
|
|
|
|
|
|
38 |
)
|
39 |
melmat = tf.multiply(melmat, enorm)
|
40 |
melmat = tf.divide(melmat, tf.reduce_sum(melmat, axis=0))
|
@@ -149,7 +145,17 @@ class Utils_functions:
|
|
149 |
S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb))
|
150 |
return tf.tensordot(S, self.melmat, 1)
|
151 |
|
152 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
outls = []
|
154 |
if isinstance(x, list):
|
155 |
bdim = x[0].shape[0]
|
@@ -161,14 +167,13 @@ class Utils_functions:
|
|
161 |
outls.append(model(x[i * bs : i * bs + bs], training=False))
|
162 |
|
163 |
if dual_out:
|
164 |
-
return (
|
165 |
-
|
166 |
-
np.concatenate([outls[k][1] for k in range(len(outls))], 0),
|
167 |
)
|
168 |
else:
|
169 |
return np.concatenate(outls, 0)
|
170 |
|
171 |
-
def distribute_enc(self, x, model, bs=
|
172 |
outls = []
|
173 |
if isinstance(x, list):
|
174 |
bdim = x[0].shape[0]
|
@@ -185,9 +190,9 @@ class Utils_functions:
|
|
185 |
res = tf.concat(resls, -2)
|
186 |
outls.append(res)
|
187 |
|
188 |
-
return
|
189 |
|
190 |
-
def distribute_dec(self, x, model, bs=
|
191 |
outls = []
|
192 |
bdim = x.shape[0]
|
193 |
for i in range(((bdim - 2) // bs) + 1):
|
@@ -196,12 +201,11 @@ class Utils_functions:
|
|
196 |
inp = tf.concat(inpls, 0)
|
197 |
res = model(inp, training=False)
|
198 |
outls.append(res)
|
199 |
-
return (
|
200 |
-
|
201 |
-
np.concatenate([outls[k][1] for k in range(len(outls))], 0),
|
202 |
)
|
203 |
|
204 |
-
def distribute_dec2(self, x, model, bs=
|
205 |
outls = []
|
206 |
bdim = x.shape[0]
|
207 |
for i in range(((bdim - 2) // bs) + 1):
|
@@ -210,32 +214,105 @@ class Utils_functions:
|
|
210 |
inp1 = tf.concat(inpls, 0)
|
211 |
outls.append(model(inp1, training=False))
|
212 |
|
213 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
def get_noise_interp(self):
|
216 |
noiseg = tf.random.normal([1, 64], dtype=tf.float32)
|
217 |
|
218 |
-
noisel = tf.concat([tf.random.normal([1,
|
219 |
-
noisec = tf.concat([tf.random.normal([1,
|
220 |
-
noiser = tf.concat([tf.random.normal([1,
|
221 |
|
222 |
-
rl = tf.linspace(noisel, noisec, self.args.
|
223 |
-
rr = tf.linspace(noisec, noiser, self.args.
|
224 |
|
225 |
noisetot = tf.concat([rl, rr], -2)
|
226 |
-
|
|
|
227 |
|
228 |
def generate_example_stereo(self, models_ls):
|
229 |
-
(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
abb = gen_ema(self.get_noise_interp(), training=False)
|
231 |
-
abbls = tf.split(abb, abb.shape[-2] //
|
232 |
abb = tf.concat(abbls, 0)
|
233 |
|
234 |
chls = []
|
235 |
for channel in range(2):
|
236 |
|
237 |
ab = self.distribute_dec2(
|
238 |
-
abb[
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
)
|
240 |
abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
|
241 |
ab = tf.concat(abls, 0)
|
@@ -273,14 +350,28 @@ class Utils_functions:
|
|
273 |
|
274 |
fig, axs = plt.subplots(nrows=4, ncols=1, figsize=(20, 20))
|
275 |
axs[0].imshow(
|
276 |
-
np.flip(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
cmap=None,
|
278 |
)
|
279 |
axs[0].axis("off")
|
280 |
axs[0].set_title("Generated1")
|
281 |
axs[1].imshow(
|
282 |
np.flip(
|
283 |
-
np.array(
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
),
|
285 |
cmap=None,
|
286 |
)
|
@@ -288,7 +379,13 @@ class Utils_functions:
|
|
288 |
axs[1].set_title("Generated2")
|
289 |
axs[2].imshow(
|
290 |
np.flip(
|
291 |
-
np.array(
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
),
|
293 |
cmap=None,
|
294 |
)
|
@@ -296,7 +393,13 @@ class Utils_functions:
|
|
296 |
axs[2].set_title("Generated3")
|
297 |
axs[3].imshow(
|
298 |
np.flip(
|
299 |
-
np.array(
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
),
|
301 |
cmap=None,
|
302 |
)
|
@@ -304,18 +407,24 @@ class Utils_functions:
|
|
304 |
axs[3].set_title("Generated4")
|
305 |
# plt.show()
|
306 |
plt.savefig(f"{path}/output.png")
|
|
|
307 |
|
308 |
-
# Save in training loop
|
309 |
def save_end(
|
310 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
):
|
312 |
-
(critic, gen, enc, dec, enc2, dec2,
|
313 |
if epoch % n_save == 0:
|
314 |
print("Saving...")
|
315 |
-
path = f"{save_path}/
|
316 |
os.mkdir(path)
|
317 |
critic.save_weights(path + "/critic.h5")
|
318 |
-
critic_rec.save_weights(path + "/critic_rec.h5")
|
319 |
gen.save_weights(path + "/gen.h5")
|
320 |
gen_ema.save_weights(path + "/gen_ema.h5")
|
321 |
# enc.save_weights(path + "/enc.h5")
|
@@ -324,84 +433,51 @@ class Utils_functions:
|
|
324 |
# dec2.save_weights(path + "/dec2.h5")
|
325 |
np.save(path + "/opt_dec.npy", opt_dec.get_weights())
|
326 |
np.save(path + "/opt_disc.npy", opt_disc.get_weights())
|
|
|
327 |
self.save_test_image_full(path, models_ls=models_ls)
|
328 |
|
329 |
def truncated_normal(self, shape, bound=2.0, dtype=tf.float32):
|
330 |
seed1, seed2 = random_seed.get_seed(tf.random.uniform((), tf.int32.min, tf.int32.max, dtype=tf.int32))
|
331 |
return tf.random.stateless_parameterized_truncated_normal(shape, [seed1, seed2], 0.0, 1.0, -bound, bound)
|
332 |
|
333 |
-
def distribute_gen(self, x, model, bs=
|
334 |
outls = []
|
335 |
bdim = x.shape[0]
|
336 |
if bdim == 1:
|
337 |
bdim = 2
|
338 |
for i in range(((bdim - 2) // bs) + 1):
|
339 |
outls.append(model(x[i * bs : i * bs + bs], training=False))
|
340 |
-
return
|
341 |
|
342 |
-
def
|
343 |
-
noiseg = self.truncated_normal([1, 64], var, dtype=tf.float32)
|
344 |
-
|
345 |
-
if var < 1.75:
|
346 |
-
var = 1.75
|
347 |
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
for k in range(len(noisels) - 1)
|
354 |
-
]
|
355 |
-
return tf.concat(rls, 0)
|
356 |
|
357 |
-
|
|
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
critic_rec,
|
367 |
-
gen_ema_techno,
|
368 |
-
[opt_dec, opt_disc],
|
369 |
-
) = models_ls_techno
|
370 |
-
(
|
371 |
-
critic,
|
372 |
-
gen,
|
373 |
-
enc,
|
374 |
-
dec_classical,
|
375 |
-
enc2,
|
376 |
-
dec2_classical,
|
377 |
-
critic_rec,
|
378 |
-
gen_ema_classical,
|
379 |
-
[opt_dec, opt_disc],
|
380 |
-
) = models_ls_classical
|
381 |
|
382 |
-
|
|
|
|
|
383 |
|
384 |
-
|
385 |
-
fac = 1
|
386 |
-
elif z == 1:
|
387 |
-
fac = 5
|
388 |
-
else:
|
389 |
-
fac = 10
|
390 |
|
391 |
-
|
392 |
-
dec = dec_techno
|
393 |
-
dec2 = dec2_techno
|
394 |
-
gen_ema = gen_ema_techno
|
395 |
-
else:
|
396 |
-
dec = dec_classical
|
397 |
-
dec2 = dec2_classical
|
398 |
-
gen_ema = gen_ema_classical
|
399 |
|
400 |
-
|
401 |
-
|
402 |
-
abls = tf.split(ab, ab.shape[0], 0)
|
403 |
-
ab = tf.concat(abls, -2)
|
404 |
-
abls = tf.split(ab, ab.shape[-2] // 16, -2)
|
405 |
abi = tf.concat(abls, 0)
|
406 |
|
407 |
chls = []
|
@@ -410,25 +486,135 @@ class Utils_functions:
|
|
410 |
ab = self.distribute_dec2(
|
411 |
abi[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth],
|
412 |
dec2,
|
413 |
-
bs=
|
414 |
)
|
415 |
-
# abls = tf.split(ab, ab.shape[-2] // (self.args.shape // 2), -2)
|
416 |
abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
|
417 |
ab = tf.concat(abls, 0)
|
418 |
|
419 |
-
ab_m, ab_p = self.distribute_dec(ab, dec, bs=
|
420 |
abwv = self.conc_tog_specphase(ab_m, ab_p)
|
421 |
chls.append(abwv)
|
422 |
|
423 |
-
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
)
|
426 |
|
427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
spec = np.flip(
|
429 |
np.array(
|
430 |
tf.transpose(
|
431 |
-
self.wv2spec_hop(
|
|
|
|
|
432 |
[1, 0],
|
433 |
)
|
434 |
),
|
@@ -436,46 +622,53 @@ class Utils_functions:
|
|
436 |
)
|
437 |
|
438 |
return (
|
439 |
-
spec,
|
440 |
(self.args.sr, np.int16(abwvc * 32767.0)),
|
441 |
)
|
442 |
|
443 |
-
def render_gradio(self,
|
444 |
-
article_text = "Original work by Marco Pasini ([Twitter](https://twitter.com/marco_ppasini))
|
445 |
|
446 |
-
def gradio_func(x, y
|
447 |
-
return self.stfunc(x, y,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
|
449 |
iface = gr.Interface(
|
450 |
fn=gradio_func,
|
451 |
inputs=[
|
452 |
-
gr.
|
453 |
-
choices=["Techno/Experimental", "
|
454 |
type="index",
|
455 |
-
|
456 |
label="Music Genre to Generate",
|
457 |
),
|
458 |
-
gr.
|
459 |
-
choices=
|
|
|
|
|
|
|
460 |
),
|
461 |
-
gr.
|
462 |
-
minimum=0,
|
463 |
-
maximum=
|
464 |
-
step=1,
|
465 |
-
|
466 |
-
label="
|
467 |
),
|
468 |
],
|
469 |
outputs=[
|
470 |
-
gr.
|
471 |
-
gr.
|
472 |
],
|
473 |
-
allow_screenshot=False,
|
474 |
title="musika!",
|
475 |
-
description="Blazingly Fast Stereo Waveform Music Generation of Arbitrary Length. Be patient and enjoy the weirdness!",
|
476 |
article=article_text,
|
477 |
-
layout="vertical",
|
478 |
-
theme="huggingface",
|
479 |
)
|
480 |
|
481 |
print("--------------------------------")
|
|
|
|
|
1 |
import os
|
|
|
2 |
import time
|
3 |
+
import datetime
|
4 |
from glob import glob
|
5 |
+
from tqdm import tqdm
|
|
|
6 |
import librosa
|
7 |
import matplotlib.pyplot as plt
|
8 |
import numpy as np
|
|
|
9 |
import tensorflow as tf
|
|
|
|
|
|
|
|
|
10 |
from tensorflow.python.framework import random_seed
|
|
|
11 |
import gradio as gr
|
12 |
from scipy.io.wavfile import write as write_wav
|
13 |
|
|
|
19 |
|
20 |
melmat = tf.signal.linear_to_mel_weight_matrix(
|
21 |
num_mel_bins=args.mel_bins,
|
22 |
+
num_spectrogram_bins=(4 * args.hop * 2) // 2 + 1,
|
23 |
sample_rate=args.sr,
|
24 |
lower_edge_hertz=0.0,
|
25 |
upper_edge_hertz=args.sr // 2,
|
26 |
)
|
27 |
mel_f = tf.convert_to_tensor(librosa.mel_frequencies(n_mels=args.mel_bins + 2, fmin=0.0, fmax=args.sr // 2))
|
28 |
enorm = tf.cast(
|
29 |
+
tf.expand_dims(
|
30 |
+
tf.constant(2.0 / (mel_f[2 : args.mel_bins + 2] - mel_f[: args.mel_bins])),
|
31 |
+
0,
|
32 |
+
),
|
33 |
+
tf.float32,
|
34 |
)
|
35 |
melmat = tf.multiply(melmat, enorm)
|
36 |
melmat = tf.divide(melmat, tf.reduce_sum(melmat, axis=0))
|
|
|
145 |
S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb))
|
146 |
return tf.tensordot(S, self.melmat, 1)
|
147 |
|
148 |
+
def rand_channel_swap(self, x):
|
149 |
+
s_l, s_r = tf.split(x, 2, -1)
|
150 |
+
if tf.random.uniform((), dtype=tf.float32) > 0.5:
|
151 |
+
sl = s_l
|
152 |
+
sr = s_r
|
153 |
+
else:
|
154 |
+
sl = s_r
|
155 |
+
sr = s_l
|
156 |
+
return tf.concat([sl, sr], -1)
|
157 |
+
|
158 |
+
def distribute(self, x, model, bs=32, dual_out=False):
|
159 |
outls = []
|
160 |
if isinstance(x, list):
|
161 |
bdim = x[0].shape[0]
|
|
|
167 |
outls.append(model(x[i * bs : i * bs + bs], training=False))
|
168 |
|
169 |
if dual_out:
|
170 |
+
return np.concatenate([outls[k][0] for k in range(len(outls))], 0), np.concatenate(
|
171 |
+
[outls[k][1] for k in range(len(outls))], 0
|
|
|
172 |
)
|
173 |
else:
|
174 |
return np.concatenate(outls, 0)
|
175 |
|
176 |
+
def distribute_enc(self, x, model, bs=32):
|
177 |
outls = []
|
178 |
if isinstance(x, list):
|
179 |
bdim = x[0].shape[0]
|
|
|
190 |
res = tf.concat(resls, -2)
|
191 |
outls.append(res)
|
192 |
|
193 |
+
return tf.concat(outls, 0)
|
194 |
|
195 |
+
def distribute_dec(self, x, model, bs=32):
|
196 |
outls = []
|
197 |
bdim = x.shape[0]
|
198 |
for i in range(((bdim - 2) // bs) + 1):
|
|
|
201 |
inp = tf.concat(inpls, 0)
|
202 |
res = model(inp, training=False)
|
203 |
outls.append(res)
|
204 |
+
return np.concatenate([outls[k][0] for k in range(len(outls))], 0), np.concatenate(
|
205 |
+
[outls[k][1] for k in range(len(outls))], 0
|
|
|
206 |
)
|
207 |
|
208 |
+
def distribute_dec2(self, x, model, bs=32):
|
209 |
outls = []
|
210 |
bdim = x.shape[0]
|
211 |
for i in range(((bdim - 2) // bs) + 1):
|
|
|
214 |
inp1 = tf.concat(inpls, 0)
|
215 |
outls.append(model(inp1, training=False))
|
216 |
|
217 |
+
return tf.concat(outls, 0)
|
218 |
+
|
219 |
+
def center_coordinate(
|
220 |
+
self, x
|
221 |
+
): # allows to have sequences with even number length with anchor in the middle of the sequence
|
222 |
+
return tf.reduce_mean(tf.stack([x, tf.roll(x, -1, -2)], 0), 0)[:, :-1, :]
|
223 |
+
|
224 |
+
# hardcoded! need to figure out how to generalize it without breaking jit compiling
|
225 |
+
def crop_coordinate(
|
226 |
+
self, x
|
227 |
+
): # randomly crops a conditioning sequence such that the anchor vector is at center of generator receptive field (maximum context is provided to the generator)
|
228 |
+
fac = tf.random.uniform((), 0, self.args.coordlen // (self.args.latlen // 2), dtype=tf.int32)
|
229 |
+
if fac == 0:
|
230 |
+
return tf.reshape(
|
231 |
+
x[
|
232 |
+
:,
|
233 |
+
(self.args.latlen // 4)
|
234 |
+
+ 0 * (self.args.latlen // 2) : (self.args.latlen // 4)
|
235 |
+
+ 0 * (self.args.latlen // 2)
|
236 |
+
+ self.args.latlen,
|
237 |
+
:,
|
238 |
+
],
|
239 |
+
[-1, self.args.latlen, x.shape[-1]],
|
240 |
+
)
|
241 |
+
elif fac == 1:
|
242 |
+
return tf.reshape(
|
243 |
+
x[
|
244 |
+
:,
|
245 |
+
(self.args.latlen // 4)
|
246 |
+
+ 1 * (self.args.latlen // 2) : (self.args.latlen // 4)
|
247 |
+
+ 1 * (self.args.latlen // 2)
|
248 |
+
+ self.args.latlen,
|
249 |
+
:,
|
250 |
+
],
|
251 |
+
[-1, self.args.latlen, x.shape[-1]],
|
252 |
+
)
|
253 |
+
else:
|
254 |
+
return tf.reshape(
|
255 |
+
x[
|
256 |
+
:,
|
257 |
+
(self.args.latlen // 4)
|
258 |
+
+ 2 * (self.args.latlen // 2) : (self.args.latlen // 4)
|
259 |
+
+ 2 * (self.args.latlen // 2)
|
260 |
+
+ self.args.latlen,
|
261 |
+
:,
|
262 |
+
],
|
263 |
+
[-1, self.args.latlen, x.shape[-1]],
|
264 |
+
)
|
265 |
+
|
266 |
+
def update_switch(self, switch, ca, cab, learning_rate_switch=0.0001, stable_point=0.9):
|
267 |
+
cert = tf.math.minimum(tf.math.maximum(tf.reduce_mean(ca) - tf.reduce_mean(cab), 0.0), 2.0) / 2.0
|
268 |
+
|
269 |
+
if cert > stable_point:
|
270 |
+
switch_new = switch - learning_rate_switch
|
271 |
+
else:
|
272 |
+
switch_new = switch + learning_rate_switch
|
273 |
+
return tf.math.maximum(tf.math.minimum(switch_new, 0.0), -1.0)
|
274 |
|
275 |
def get_noise_interp(self):
|
276 |
noiseg = tf.random.normal([1, 64], dtype=tf.float32)
|
277 |
|
278 |
+
noisel = tf.concat([tf.random.normal([1, self.args.coorddepth], dtype=tf.float32), noiseg], -1)
|
279 |
+
noisec = tf.concat([tf.random.normal([1, self.args.coorddepth], dtype=tf.float32), noiseg], -1)
|
280 |
+
noiser = tf.concat([tf.random.normal([1, self.args.coorddepth], dtype=tf.float32), noiseg], -1)
|
281 |
|
282 |
+
rl = tf.linspace(noisel, noisec, self.args.coordlen + 1, axis=-2)[:, :-1, :]
|
283 |
+
rr = tf.linspace(noisec, noiser, self.args.coordlen + 1, axis=-2)
|
284 |
|
285 |
noisetot = tf.concat([rl, rr], -2)
|
286 |
+
noisetot = self.center_coordinate(noisetot)
|
287 |
+
return self.crop_coordinate(noisetot)
|
288 |
|
289 |
def generate_example_stereo(self, models_ls):
|
290 |
+
(
|
291 |
+
critic,
|
292 |
+
gen,
|
293 |
+
enc,
|
294 |
+
dec,
|
295 |
+
enc2,
|
296 |
+
dec2,
|
297 |
+
gen_ema,
|
298 |
+
[opt_dec, opt_disc],
|
299 |
+
switch,
|
300 |
+
) = models_ls
|
301 |
abb = gen_ema(self.get_noise_interp(), training=False)
|
302 |
+
abbls = tf.split(abb, abb.shape[-2] // 8, -2)
|
303 |
abb = tf.concat(abbls, 0)
|
304 |
|
305 |
chls = []
|
306 |
for channel in range(2):
|
307 |
|
308 |
ab = self.distribute_dec2(
|
309 |
+
abb[
|
310 |
+
:,
|
311 |
+
:,
|
312 |
+
:,
|
313 |
+
channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth,
|
314 |
+
],
|
315 |
+
dec2,
|
316 |
)
|
317 |
abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
|
318 |
ab = tf.concat(abls, 0)
|
|
|
350 |
|
351 |
fig, axs = plt.subplots(nrows=4, ncols=1, figsize=(20, 20))
|
352 |
axs[0].imshow(
|
353 |
+
np.flip(
|
354 |
+
np.array(
|
355 |
+
tf.transpose(
|
356 |
+
self.wv2spec_hop((abwv[:, 0] + abwv[:, 1]) / 2.0, 80.0, self.args.hop * 2),
|
357 |
+
[1, 0],
|
358 |
+
)
|
359 |
+
),
|
360 |
+
-2,
|
361 |
+
),
|
362 |
cmap=None,
|
363 |
)
|
364 |
axs[0].axis("off")
|
365 |
axs[0].set_title("Generated1")
|
366 |
axs[1].imshow(
|
367 |
np.flip(
|
368 |
+
np.array(
|
369 |
+
tf.transpose(
|
370 |
+
self.wv2spec_hop((abwv2[:, 0] + abwv2[:, 1]) / 2.0, 80.0, self.args.hop * 2),
|
371 |
+
[1, 0],
|
372 |
+
)
|
373 |
+
),
|
374 |
+
-2,
|
375 |
),
|
376 |
cmap=None,
|
377 |
)
|
|
|
379 |
axs[1].set_title("Generated2")
|
380 |
axs[2].imshow(
|
381 |
np.flip(
|
382 |
+
np.array(
|
383 |
+
tf.transpose(
|
384 |
+
self.wv2spec_hop((abwv3[:, 0] + abwv3[:, 1]) / 2.0, 80.0, self.args.hop * 2),
|
385 |
+
[1, 0],
|
386 |
+
)
|
387 |
+
),
|
388 |
+
-2,
|
389 |
),
|
390 |
cmap=None,
|
391 |
)
|
|
|
393 |
axs[2].set_title("Generated3")
|
394 |
axs[3].imshow(
|
395 |
np.flip(
|
396 |
+
np.array(
|
397 |
+
tf.transpose(
|
398 |
+
self.wv2spec_hop((abwv4[:, 0] + abwv4[:, 1]) / 2.0, 80.0, self.args.hop * 2),
|
399 |
+
[1, 0],
|
400 |
+
)
|
401 |
+
),
|
402 |
+
-2,
|
403 |
),
|
404 |
cmap=None,
|
405 |
)
|
|
|
407 |
axs[3].set_title("Generated4")
|
408 |
# plt.show()
|
409 |
plt.savefig(f"{path}/output.png")
|
410 |
+
plt.close()
|
411 |
|
|
|
412 |
def save_end(
|
413 |
+
self,
|
414 |
+
epoch,
|
415 |
+
gloss,
|
416 |
+
closs,
|
417 |
+
mloss,
|
418 |
+
models_ls=None,
|
419 |
+
n_save=3,
|
420 |
+
save_path="checkpoints",
|
421 |
):
|
422 |
+
(critic, gen, enc, dec, enc2, dec2, gen_ema, [opt_dec, opt_disc], switch) = models_ls
|
423 |
if epoch % n_save == 0:
|
424 |
print("Saving...")
|
425 |
+
path = f"{save_path}/MUSIKA_iterations-{((epoch+1)*self.args.totsamples)//(self.args.bs*1000)}k_losses-{str(gloss)[:9]}-{str(closs)[:9]}-{str(mloss)[:9]}"
|
426 |
os.mkdir(path)
|
427 |
critic.save_weights(path + "/critic.h5")
|
|
|
428 |
gen.save_weights(path + "/gen.h5")
|
429 |
gen_ema.save_weights(path + "/gen_ema.h5")
|
430 |
# enc.save_weights(path + "/enc.h5")
|
|
|
433 |
# dec2.save_weights(path + "/dec2.h5")
|
434 |
np.save(path + "/opt_dec.npy", opt_dec.get_weights())
|
435 |
np.save(path + "/opt_disc.npy", opt_disc.get_weights())
|
436 |
+
np.save(path + "/switch.npy", switch.numpy())
|
437 |
self.save_test_image_full(path, models_ls=models_ls)
|
438 |
|
439 |
def truncated_normal(self, shape, bound=2.0, dtype=tf.float32):
|
440 |
seed1, seed2 = random_seed.get_seed(tf.random.uniform((), tf.int32.min, tf.int32.max, dtype=tf.int32))
|
441 |
return tf.random.stateless_parameterized_truncated_normal(shape, [seed1, seed2], 0.0, 1.0, -bound, bound)
|
442 |
|
443 |
+
def distribute_gen(self, x, model, bs=32):
|
444 |
outls = []
|
445 |
bdim = x.shape[0]
|
446 |
if bdim == 1:
|
447 |
bdim = 2
|
448 |
for i in range(((bdim - 2) // bs) + 1):
|
449 |
outls.append(model(x[i * bs : i * bs + bs], training=False))
|
450 |
+
return tf.concat(outls, 0)
|
451 |
|
452 |
+
def generate_waveform(self, inp, gen_ema, dec, dec2, batch_size=64):
|
|
|
|
|
|
|
|
|
453 |
|
454 |
+
ab = self.distribute_gen(inp, gen_ema, bs=batch_size)
|
455 |
+
abls = tf.split(ab, ab.shape[0], 0)
|
456 |
+
ab = tf.concat(abls, -2)
|
457 |
+
abls = tf.split(ab, ab.shape[-2] // 8, -2)
|
458 |
+
abi = tf.concat(abls, 0)
|
|
|
|
|
|
|
459 |
|
460 |
+
chls = []
|
461 |
+
for channel in range(2):
|
462 |
|
463 |
+
ab = self.distribute_dec2(
|
464 |
+
abi[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth],
|
465 |
+
dec2,
|
466 |
+
bs=batch_size,
|
467 |
+
)
|
468 |
+
abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
|
469 |
+
ab = tf.concat(abls, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
+
ab_m, ab_p = self.distribute_dec(ab, dec, bs=batch_size)
|
472 |
+
abwv = self.conc_tog_specphase(ab_m, ab_p)
|
473 |
+
chls.append(abwv)
|
474 |
|
475 |
+
return np.clip(np.squeeze(np.stack(chls, -1)), -1.0, 1.0)
|
|
|
|
|
|
|
|
|
|
|
476 |
|
477 |
+
def decode_waveform(self, lat, dec, dec2, batch_size=64):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
|
479 |
+
lat = lat[:, :, : (lat.shape[-2] // 8) * 8, :]
|
480 |
+
abls = tf.split(lat, lat.shape[-2] // 8, -2)
|
|
|
|
|
|
|
481 |
abi = tf.concat(abls, 0)
|
482 |
|
483 |
chls = []
|
|
|
486 |
ab = self.distribute_dec2(
|
487 |
abi[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth],
|
488 |
dec2,
|
489 |
+
bs=batch_size,
|
490 |
)
|
|
|
491 |
abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
|
492 |
ab = tf.concat(abls, 0)
|
493 |
|
494 |
+
ab_m, ab_p = self.distribute_dec(ab, dec, bs=batch_size)
|
495 |
abwv = self.conc_tog_specphase(ab_m, ab_p)
|
496 |
chls.append(abwv)
|
497 |
|
498 |
+
return np.clip(np.squeeze(np.stack(chls, -1)), -1.0, 1.0)
|
499 |
+
|
500 |
+
def get_noise_interp_multi(self, fac=1, var=2.0):
|
501 |
+
noiseg = self.truncated_normal([1, self.args.coorddepth], var, dtype=tf.float32)
|
502 |
+
|
503 |
+
coordratio = self.args.coordlen // self.args.latlen
|
504 |
+
|
505 |
+
noisels = [
|
506 |
+
tf.concat([self.truncated_normal([1, 64], var, dtype=tf.float32), noiseg], -1)
|
507 |
+
for i in range(3 + ((fac - 1) // coordratio))
|
508 |
+
]
|
509 |
+
rls = tf.concat(
|
510 |
+
[
|
511 |
+
tf.linspace(noisels[k], noisels[k + 1], self.args.coordlen + 1, axis=-2)[:, :-1, :]
|
512 |
+
for k in range(len(noisels) - 1)
|
513 |
+
],
|
514 |
+
-2,
|
515 |
)
|
516 |
|
517 |
+
rls = self.center_coordinate(rls)
|
518 |
+
rls = rls[:, self.args.latlen // 4 :, :]
|
519 |
+
rls = rls[:, : (rls.shape[-2] // self.args.latlen) * self.args.latlen, :]
|
520 |
+
|
521 |
+
rls = tf.split(rls, rls.shape[-2] // self.args.latlen, -2)
|
522 |
+
|
523 |
+
return tf.concat(rls[:fac], 0)
|
524 |
+
|
525 |
+
def get_noise_interp_loop(self, fac=1, var=2.0):
|
526 |
+
noiseg = self.truncated_normal([1, self.args.coorddepth], var, dtype=tf.float32)
|
527 |
+
|
528 |
+
coordratio = self.args.coordlen // self.args.latlen
|
529 |
+
|
530 |
+
noisels_pre = [tf.concat([self.truncated_normal([1, 64], var, dtype=tf.float32), noiseg], -1) for i in range(2)]
|
531 |
+
noisels = []
|
532 |
+
for k in range(fac + 2):
|
533 |
+
noisels.append(noisels_pre[0])
|
534 |
+
noisels.append(noisels_pre[1])
|
535 |
+
rls = tf.concat(
|
536 |
+
[
|
537 |
+
tf.linspace(noisels[k], noisels[k + 1], self.args.latlen // 2 + 1, axis=-2)[:, :-1, :]
|
538 |
+
for k in range(len(noisels) - 1)
|
539 |
+
],
|
540 |
+
-2,
|
541 |
+
)
|
542 |
+
|
543 |
+
rls = self.center_coordinate(rls)
|
544 |
+
rls = rls[:, self.args.latlen // 2 :, :]
|
545 |
+
rls = rls[:, : (rls.shape[-2] // self.args.latlen) * self.args.latlen, :]
|
546 |
+
|
547 |
+
rls = tf.split(rls, rls.shape[-2] // self.args.latlen, -2)
|
548 |
+
|
549 |
+
return tf.concat(rls[:fac], 0)
|
550 |
+
|
551 |
+
def generate(self, models_ls):
|
552 |
+
critic, gen, enc, dec, enc2, dec2, gen_ema, [opt_dec, opt_disc], switch = models_ls
|
553 |
+
os.makedirs(self.args.save_path, exist_ok=True)
|
554 |
+
fac = (self.args.seconds // 23) + 1
|
555 |
+
print(f"Generating {self.args.num_samples} samples...")
|
556 |
+
for i in tqdm(range(self.args.num_samples)):
|
557 |
+
wv = self.generate_waveform(
|
558 |
+
self.get_noise_interp_multi(fac, self.args.truncation), gen_ema, dec, dec2, batch_size=64
|
559 |
+
)
|
560 |
+
dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
561 |
+
write_wav(
|
562 |
+
f"{self.args.save_path}/{i}_{dt}.wav", self.args.sr, np.squeeze(wv)[: self.args.seconds * self.args.sr]
|
563 |
+
)
|
564 |
+
|
565 |
+
def decode_path(self, models_ls):
|
566 |
+
critic, gen, enc, dec, enc2, dec2, gen_ema, [opt_dec, opt_disc], switch = models_ls
|
567 |
+
os.makedirs(self.args.save_path, exist_ok=True)
|
568 |
+
pathls = glob(self.args.files_path + "/*.npy")
|
569 |
+
print(f"Decoding {len(pathls)} samples...")
|
570 |
+
for p in tqdm(pathls):
|
571 |
+
tp, ext = os.path.splitext(p)
|
572 |
+
bname = os.path.basename(tp)
|
573 |
+
lat = np.load(p, allow_pickle=True)
|
574 |
+
lat = tf.expand_dims(lat, 0)
|
575 |
+
lat = tf.expand_dims(lat, 0)
|
576 |
+
wv = self.decode_waveform(lat, dec, dec2, batch_size=64)
|
577 |
+
# dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
578 |
+
write_wav(f"{self.args.save_path}/{bname}.wav", self.args.sr, np.squeeze(wv))
|
579 |
+
|
580 |
+
def stfunc(self, genre, z, var, models_ls_1, models_ls_2, models_ls_3):
|
581 |
+
|
582 |
+
critic, gen, enc, dec, enc2, dec2, gen_ema_1, [opt_dec, opt_disc], switch = models_ls_1
|
583 |
+
critic, gen, enc, dec, enc2, dec2, gen_ema_2, [opt_dec, opt_disc], switch = models_ls_2
|
584 |
+
critic, gen, enc, dec, enc2, dec2, gen_ema_3, [opt_dec, opt_disc], switch = models_ls_3
|
585 |
+
|
586 |
+
if genre == 0:
|
587 |
+
gen_ema = gen_ema_1
|
588 |
+
elif genre == 1:
|
589 |
+
gen_ema = gen_ema_2
|
590 |
+
else:
|
591 |
+
gen_ema = gen_ema_3
|
592 |
+
|
593 |
+
var = float(var)
|
594 |
+
|
595 |
+
if z == 0:
|
596 |
+
fac = 1
|
597 |
+
elif z == 1:
|
598 |
+
fac = 5
|
599 |
+
else:
|
600 |
+
fac = 10
|
601 |
+
|
602 |
+
bef = time.time()
|
603 |
+
|
604 |
+
noiseinp = self.get_noise_interp_multi(fac, var)
|
605 |
+
|
606 |
+
abwvc = self.generate_waveform(noiseinp, gen_ema, dec, dec2, batch_size=64)
|
607 |
+
|
608 |
+
# print(
|
609 |
+
# f"Time for complete generation pipeline: {time.time()-bef} s {int(np.round((fac*23.)/(time.time()-bef)))}x faster than Real Time!"
|
610 |
+
# )
|
611 |
+
|
612 |
spec = np.flip(
|
613 |
np.array(
|
614 |
tf.transpose(
|
615 |
+
self.wv2spec_hop(
|
616 |
+
(abwvc[: 23 * self.args.sr, 0] + abwvc[: 23 * self.args.sr, 1]) / 2.0, 80.0, self.args.hop * 2
|
617 |
+
),
|
618 |
[1, 0],
|
619 |
)
|
620 |
),
|
|
|
622 |
)
|
623 |
|
624 |
return (
|
625 |
+
np.clip(spec, -1.0, 1.0),
|
626 |
(self.args.sr, np.int16(abwvc * 32767.0)),
|
627 |
)
|
628 |
|
629 |
+
def render_gradio(self, models_ls_1, models_ls_2, models_ls_3, train=True):
|
630 |
+
article_text = "Original work by Marco Pasini ([Twitter](https://twitter.com/marco_ppasini)) at the Institute of Computational Perception, JKU Linz. Supervised by Jan Schlüter."
|
631 |
|
632 |
+
def gradio_func(genre, x, y):
|
633 |
+
return self.stfunc(genre, x, y, models_ls_1, models_ls_2, models_ls_3)
|
634 |
+
|
635 |
+
if self.args.small:
|
636 |
+
durations = ["11s", "59s", "1m 58s"]
|
637 |
+
durations_default = "59s"
|
638 |
+
else:
|
639 |
+
durations = ["23s", "1m 58s", "3m 57s"]
|
640 |
+
durations_default = "1m 58s"
|
641 |
|
642 |
iface = gr.Interface(
|
643 |
fn=gradio_func,
|
644 |
inputs=[
|
645 |
+
gr.Radio(
|
646 |
+
choices=["Techno/Experimental", "Death Metal (finetuned)", "Misc"],
|
647 |
type="index",
|
648 |
+
value="Techno/Experimental",
|
649 |
label="Music Genre to Generate",
|
650 |
),
|
651 |
+
gr.Radio(
|
652 |
+
choices=durations,
|
653 |
+
type="index",
|
654 |
+
value=durations_default,
|
655 |
+
label="Generated Music Length",
|
656 |
),
|
657 |
+
gr.Slider(
|
658 |
+
minimum=0.1,
|
659 |
+
maximum=3.9,
|
660 |
+
step=0.1,
|
661 |
+
value=1.8,
|
662 |
+
label="How much do you want the music style to be varied? (Stddev truncation for random vectors)",
|
663 |
),
|
664 |
],
|
665 |
outputs=[
|
666 |
+
gr.Image(label="Log-MelSpectrogram of Generated Audio (first 23 s)"),
|
667 |
+
gr.Audio(type="numpy", label="Generated Audio"),
|
668 |
],
|
|
|
669 |
title="musika!",
|
670 |
+
description="Blazingly Fast 44.1 kHz Stereo Waveform Music Generation of Arbitrary Length. Be patient and enjoy the weirdness!",
|
671 |
article=article_text,
|
|
|
|
|
672 |
)
|
673 |
|
674 |
print("--------------------------------")
|