File size: 21,472 Bytes
f1118b2
 
 
 
 
 
 
 
 
 
 
 
1685375
f1118b2
 
 
 
 
 
95307c3
3c05160
f1118b2
 
 
 
 
 
 
 
 
 
95307c3
f1118b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c05160
95307c3
 
f1118b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85616b
f1118b2
 
 
 
 
 
 
e85616b
dd86254
 
 
 
f1118b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685375
f1118b2
 
1685375
f1118b2
 
dd86254
f1118b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd86254
1685375
 
 
 
 
 
 
 
 
 
 
 
 
 
dd86254
 
 
1685375
 
 
 
 
 
 
dd86254
 
1685375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85616b
 
 
 
 
 
 
1685375
 
e85616b
 
1685375
 
 
e85616b
 
 
1685375
 
 
 
e85616b
 
 
 
 
1685375
e85616b
 
 
 
f1118b2
 
e85616b
f1118b2
 
 
 
 
 
 
0cb1fb9
f1118b2
 
 
 
 
 
 
 
 
95307c3
f1118b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95307c3
f1118b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95307c3
f1118b2
 
 
95307c3
f1118b2
d89263e
f1118b2
5525065
f1118b2
 
 
 
 
 
 
95307c3
 
f1118b2
 
 
 
 
95307c3
f1118b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95307c3
f1118b2
 
 
 
 
 
 
 
 
 
 
95307c3
f1118b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle

import gradio as gr
import numpy as np
import pandas as pd


basic_component_values = [None] * 6
leader_component_values = [None]

def make_default_md(arena_df, elo_results):
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)

    leaderboard_md = f"""
# NeurIPS LLM Merging Competition Leaderboard
[Website](https://llm-merging.github.io/index) | [Starter Kit (Github)](https://github.com/llm-merging/LLM-Merging) | [Discord](https://discord.com/invite/dPBHEVnV) |

"""
    return leaderboard_md


def make_arena_leaderboard_md(arena_df):
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)
    space = "   "
    leaderboard_md = f"""
Total #models: **{total_models}**.{space} Total #votes: **{"{:,}".format(total_votes)}**.{space} Last updated: June 1, 2024.

"""
    return leaderboard_md

def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)
    space = "   "
    total_subset_votes = sum(arena_subset_df["num_battles"]) // 2
    total_subset_models = len(arena_subset_df)
    leaderboard_md = f"""### {cat_name_to_explanation[name]}
#### [Coverage] {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space}
"""
    return leaderboard_md

def make_full_leaderboard_md(elo_results):
    leaderboard_md = f"""
Three benchmarks are displayed: **Test Task 1**, **Test Task 2**, **Test Task 3**.

Higher values are better for all benchmarks.
"""
    return leaderboard_md


def make_leaderboard_md_live(elo_results):
    leaderboard_md = f"""
# Leaderboard
Last updated: {elo_results["last_updated_datetime"]}
{elo_results["leaderboard_table"]}
"""
    return leaderboard_md


def update_elo_components(max_num_files, elo_results_file):
    log_files = get_log_files(max_num_files)

    # Leaderboard
    if elo_results_file is None:  # Do live update
        battles = clean_battle_data(log_files)
        elo_results = report_elo_analysis_results(battles)
        leader_component_values[0] = make_leaderboard_md_live(elo_results)

    # Basic stats
    basic_stats = report_basic_stats(log_files)
    md0 = f"Last updated: {basic_stats['last_updated_datetime']}"

    md1 = "### Action Histogram\n"
    md1 += basic_stats["action_hist_md"] + "\n"

    md2 = "### Anony. Vote Histogram\n"
    md2 += basic_stats["anony_vote_hist_md"] + "\n"

    md3 = "### Model Call Histogram\n"
    md3 += basic_stats["model_hist_md"] + "\n"

    md4 = "### Model Call (Last 24 Hours)\n"
    md4 += basic_stats["num_chats_last_24_hours"] + "\n"

    basic_component_values[0] = md0
    basic_component_values[1] = basic_stats["chat_dates_bar"]
    basic_component_values[2] = md1
    basic_component_values[3] = md2
    basic_component_values[4] = md3
    basic_component_values[5] = md4


def update_worker(max_num_files, interval, elo_results_file):
    while True:
        tic = time.time()
        update_elo_components(max_num_files, elo_results_file)
        durtaion = time.time() - tic
        print(f"update duration: {durtaion:.2f} s")
        time.sleep(max(interval - durtaion, 0))


def load_demo(url_params, request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
    return basic_component_values + leader_component_values


def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def load_leaderboard_table_csv(filename, add_hyperlink=True):
    lines = open(filename).readlines()
    heads = [v.strip() for v in lines[0].split(",")]
    rows = []
    for i in range(1, len(lines)):
        row = [v.strip() for v in lines[i].split(",")]
        for j in range(len(heads)):
            item = {}
            for h, v in zip(heads, row):
                if h == "Arena Elo rating":
                    if v != "-":
                        v = int(ast.literal_eval(v))
                    else:
                        v = np.nan
                elif h == "MMLU":
                    if v != "-":
                        v = round(ast.literal_eval(v) * 100, 1)
                    else:
                        v = np.nan
                elif h == "MT-bench (win rate %)":
                    if v != "-":
                        v = round(ast.literal_eval(v[:-1]), 1)
                    else:
                        v = np.nan
                elif h == "MT-bench (score)":
                    if v != "-":
                        v = round(ast.literal_eval(v), 2)
                    else:
                        v = np.nan
                item[h] = v
            if add_hyperlink:
                item["Model"] = model_hyperlink(item["Model"], item["Link"])
        rows.append(item)

    return rows


def build_basic_stats_tab():
    empty = "Loading ..."
    basic_component_values[:] = [empty, None, empty, empty, empty, empty]

    md0 = gr.Markdown(empty)
    gr.Markdown("#### Figure 1: Number of model calls and votes")
    plot_1 = gr.Plot(show_label=False)
    with gr.Row():
        with gr.Column():
            md1 = gr.Markdown(empty)
        with gr.Column():
            md2 = gr.Markdown(empty)
    with gr.Row():
        with gr.Column():
            md3 = gr.Markdown(empty)
        with gr.Column():
            md4 = gr.Markdown(empty)
    return [md0, plot_1, md1, md2, md3, md4]

def get_full_table(model_table_df):
    values = []
    for i in range(len(model_table_df)):
        row = []
        model_key = model_table_df.iloc[i]["key"]
        model_name = model_table_df.iloc[i]["Model"]
        # model display name
        row.append(model_name)
        row.append(np.nan)
        row.append(np.nan)
        row.append(np.nan)
        # row.append(model_table_df.iloc[i]["MT-bench (score)"])
        # row.append(model_table_df.iloc[i]["MMLU"])
        # Organization
        row.append(model_table_df.iloc[i]["Organization"])
        # license
        row.append(model_table_df.iloc[i]["License"])

        values.append(row)
    values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
    return values

def create_ranking_str(ranking, ranking_difference):
    if ranking_difference > 0:
        # return f"{int(ranking)} (\u2191{int(ranking_difference)})"
        return f"{int(ranking)} \u2191"
    elif ranking_difference < 0:
        # return f"{int(ranking)} (\u2193{int(-ranking_difference)})"
        return f"{int(ranking)} \u2193"
    else:
        return f"{int(ranking)}"
    
def recompute_final_ranking(arena_df):
    # compute ranking based on CI
    ranking = {}
    for i, model_a in enumerate(arena_df.index):
        ranking[model_a] = 1
        for j, model_b in enumerate(arena_df.index):
            if i == j:
                continue
            if arena_df.loc[model_b]["rating_q025"] > arena_df.loc[model_a]["rating_q975"]:
                ranking[model_a] += 1
    return list(ranking.values())
    
def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
    arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
    arena_df["final_ranking"] = recompute_final_ranking(arena_df)
    arena_df = arena_df.sort_values(by=["final_ranking"], ascending=True)

    # arena_df["final_ranking"] = range(1, len(arena_df) + 1)
    # sort by rating
    if arena_subset_df is not None:
        # filter out models not in the arena_df
        arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
        arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
        # arena_subset_df = arena_subset_df.sort_values(by=["final_ranking"], ascending=True)
        arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
        # keep only the models in the subset in arena_df and recompute final_ranking
        arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
        # recompute final ranking
        arena_df["final_ranking"] = recompute_final_ranking(arena_df)

        # assign ranking by the order
        arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
        arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
        # join arena_df and arena_subset_df on index
        arena_df = arena_subset_df.join(arena_df["final_ranking"], rsuffix="_global", how="inner")
        arena_df["ranking_difference"] =  arena_df["final_ranking_global"] - arena_df["final_ranking"]

        arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
        arena_df["final_ranking"] = arena_df.apply(lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]), axis=1)

    values = []
    for i in range(len(arena_df)):
        row = []
        model_key = arena_df.index[i]
        try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models)
            model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
                0
            ]
            # rank
            ranking = arena_df.iloc[i].get("final_ranking") or i+1
            row.append(ranking)
            if arena_subset_df is not None:
                row.append(arena_df.iloc[i].get("ranking_difference") or 0)
            # model display name
            row.append(model_name)
            # elo rating
            row.append(round(arena_df.iloc[i]["rating"]))
            # Organization
            row.append(
                model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
            )
            # license
            row.append(
                model_table_df[model_table_df["key"] == model_key]["License"].values[0]
            )
            values.append(row)
        except Exception as e:
            print(f"{model_key} - {e}")
    return values

key_to_category_name = {
    "full": "Overall",
}
cat_name_to_explanation = {
    "Overall": "Overall Questions",
}

def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False):
    arena_dfs = {}
    category_elo_results = {}
    if results_file is None:  # Do live update
        default_md = "Loading ..."
    else:
        with open(results_file, "rb") as fin:
            elo_results = pickle.load(fin)
            if "full" in elo_results:
                print("KEYS ", elo_results.keys())
                for k in elo_results.keys():
                    if k not in key_to_category_name:
                        continue
                    arena_dfs[key_to_category_name[k]] = elo_results[k]["leaderboard_table_df"]
                    category_elo_results[key_to_category_name[k]] = elo_results[k]

        arena_df = arena_dfs["Overall"]
        default_md = make_default_md(arena_df, category_elo_results["Overall"])

    md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
    if leaderboard_table_file:
        data = load_leaderboard_table_csv(leaderboard_table_file)
        model_table_df = pd.DataFrame(data)

        with gr.Tabs() as tabs:
            # arena table
            arena_table_vals = get_full_table(model_table_df) 
            with gr.Tab("Arena Elo", id=0):
                md = make_arena_leaderboard_md(arena_df)
                leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown")
                with gr.Row():
                    with gr.Column(scale=2):
                        category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Overall")
                    default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Overall")
                    with gr.Column(scale=4, variant="panel"):
                        category_deets = gr.Markdown(default_category_details, elem_id="category_deets")

                elo_display_df = gr.Dataframe(
                    headers=[
                        "Rank",
                        "πŸ€– Model",
                        "⭐ Task 1",
                        "πŸ“ˆ Task 2",
                        "πŸ“š Task 3",
                        "Organization",
                        "License",
                    ],
                    datatype=[
                        "number",
                        "markdown",
                        "number",
                        "number",
                        "number",
                        "str",
                        "str",
                    ],
                    value=arena_table_vals,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[70, 190, 110, 160, 150, 140],
                    wrap=True,
                )

                gr.Markdown(
                    f"""Note: .
            """,
                    elem_id="leaderboard_markdown"
                )

                leader_component_values[:] = [default_md]

            # with gr.Tab("Full Leaderboard", id=0):
            #     md = make_full_leaderboard_md(elo_results)
            #     gr.Markdown(md, elem_id="leaderboard_markdown")
            #     with gr.Row():
            #         with gr.Column(scale=2):
            #             category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Overall")
            #         default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Overall")
            #         with gr.Column(scale=4, variant="panel"):
            #             category_deets = gr.Markdown(default_category_details, elem_id="category_deets")

            #     full_table_vals = get_full_table(model_table_df)
            #     display_df = gr.Dataframe(
            #         headers=[
            #             "πŸ€– Model",
            #             "⭐ Task 1",
            #             "πŸ“ˆ Task 2",
            #             "πŸ“š Task 3",
            #             "Organization",
            #             "License",
            #         ],
            #         datatype=["markdown", "number", "number", "number", "str", "str"],
            #         value=full_table_vals,
            #         elem_id="full_leaderboard_dataframe",
            #         column_widths=[200, 100, 100, 100, 150, 150],
            #         height=700,
            #         wrap=True,
            #     )
            #     gr.Markdown(
            #         f"""Note: .
            #         """,
            #         elem_id="leaderboard_markdown"
            #     )

            #     leader_component_values[:] = [default_md]
        if not show_plot:
            gr.Markdown(
                """ ## Submit your model [here]().
                """,
                elem_id="leaderboard_markdown",
            )
    else:
        pass

    def update_leaderboard_df(arena_table_vals):
        elo_datarame = pd.DataFrame(arena_table_vals, columns=[ "Rank", "πŸ€– Model", "⭐ Arena Elo", "Organization", "License"])

        # goal: color the rows based on the rank with styler
        def highlight_max(s):
            # all items in S which contain up arrow should be green, down arrow should be red, otherwise black
            return ["color: green; font-weight: bold" if "\u2191" in v else "color: red; font-weight: bold" if "\u2193" in v else "" for v in s]
            
        def highlight_rank_max(s):
            return ["color: green; font-weight: bold" if v > 0 else "color: red; font-weight: bold" if v < 0 else "" for v in s]
        
        return elo_datarame.style.apply(highlight_max, subset=["Rank"])

    def update_leaderboard_and_plots(category):
        arena_subset_df = arena_dfs[category]
        arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 500]
        elo_subset_results = category_elo_results[category]
        arena_df = arena_dfs["Overall"]
        arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df = arena_subset_df if category != "Overall" else None)
        if category != "Overall":
            arena_values = update_leaderboard_df(arena_values)
            arena_values = gr.Dataframe(
                    headers=[
                        "Rank",
                        "πŸ€– Model",
                        "⭐ Arena Elo",
                        "Organization",
                        "License",
                    ],
                    datatype=[
                        "number",
                        "markdown",
                        "number",
                        "str",
                        "str",
                    ],
                    value=arena_values,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[60, 190, 110, 160, 150, 140],
                    wrap=True,
                )
        else:
            arena_values = gr.Dataframe(
                    headers=[
                        "Rank",
                        "πŸ€– Model",
                        "⭐ Arena Elo",
                        "Organization",
                        "License",
                    ],
                    datatype=[
                        "number",
                        "markdown",
                        "number",
                        "str",
                        "str",
                    ],
                    value=arena_values,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[70, 190, 110, 160, 150, 140],
                    wrap=True,
                )


        leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)
        return arena_values, leaderboard_md
                
    category_dropdown.change(update_leaderboard_and_plots, inputs=[category_dropdown], outputs=[display_df, category_deets])

    with gr.Accordion(
        "πŸ“ Citation",
        open=True,
    ):
        citation_md = """
        ### Citation
        Please cite the following paper 
    
        """
        gr.Markdown(citation_md, elem_id="leaderboard_markdown")
        gr.Markdown(acknowledgment_md)

    if show_plot:
        return [md_1]
    return [md_1]


block_css = """
#notice_markdown {
    font-size: 104%
}
#notice_markdown th {
    display: none;
}
#notice_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}

#category_deets {
    text-align: center;
    padding: 0px;
    padding-left: 5px;
}

#leaderboard_markdown {
    font-size: 104%
}
#leaderboard_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}

#leaderboard_header_markdown {
    font-size: 104%;
    text-align: center;
    display:block;
}

#leaderboard_dataframe td {
    line-height: 0.1em;
}

#plot-title {
    text-align: center;
    display:block;
}

#non-interactive-button {
  display: inline-block;
  padding: 10px 10px;
  background-color: #f7f7f7; /* Super light grey background */
  text-align: center;
  font-size: 26px; /* Larger text */
  border-radius: 0; /* Straight edges, no border radius */
  border: 0px solid #dcdcdc; /* A light grey border to match the background */
  user-select: none; /* The text inside the button is not selectable */
  pointer-events: none; /* The button is non-interactive */
}

footer {
    display:none !important
}
.sponsor-image-about img {
    margin: 0 20px;
    margin-top: 20px;
    height: 40px;
    max-height: 100%;
    width: auto;
    float: left;
}
"""

acknowledgment_md = """
### Acknowledgment
We thank []() for their generous [sponsorship]().

<div class="sponsor-image-about">
</div>
"""

def build_demo(elo_results_file, leaderboard_table_file):
    text_size = gr.themes.sizes.text_lg
    theme = gr.themes.Base(text_size=text_size)
    theme.set(button_secondary_background_fill_hover="*primary_300", 
              button_secondary_background_fill_hover_dark="*primary_700")
    with gr.Blocks(
        title="LLM Merging Leaderboard",
        theme=theme,
        # theme = gr.themes.Base.load("theme.json"), # uncomment to use new cool theme
        css=block_css,
    ) as demo:
        leader_components = build_leaderboard_tab(
            elo_results_file, leaderboard_table_file, show_plot=True
        )
    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--host", default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    args = parser.parse_args()

    elo_result_files = glob.glob("elo_results_*.pkl")
    elo_result_files.sort(key=lambda x: int(x[12:-4]))
    elo_result_file = elo_result_files[-1]

    leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
    leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
    leaderboard_table_file = leaderboard_table_files[-1]

    demo = build_demo(elo_result_file, leaderboard_table_file)
    demo.launch(share=args.share, server_name=args.host, server_port=args.port)