Spaces:
Runtime error
Runtime error
File size: 3,986 Bytes
89d4656 f97c0ed 4766c38 89d4656 dd657ca 9d65325 2b05ce7 f97c0ed 4766c38 f97c0ed 4766c38 f97c0ed 89d4656 f97c0ed c343c55 f97c0ed 4766c38 9d65325 4f8ce01 9d65325 89d4656 9d65325 89d4656 4766c38 f97c0ed 3a97bdf d11cee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import gradio as gr
import json
import re
import string
import pandas as pd
import os
import requests
from textwrap import wrap
import uuid
import gspread
import ast
def download_and_save_file(URL, audio_dir):
headers = {
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36',
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'referer': 'https://www.google.com/',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'en-US,en;q=0.9,',
'cookie': 'prov=6bb44cc9-dfe4-1b95-a65d-5250b3b4c9fb; _ga=GA1.2.1363624981.1550767314; __qca=P0-1074700243-1550767314392; notice-ctt=4%3B1550784035760; _gid=GA1.2.1415061800.1552935051; acct=t=4CnQ70qSwPMzOe6jigQlAR28TSW%2fMxzx&s=32zlYt1%2b3TBwWVaCHxH%2bl5aDhLjmq4Xr',
}
doc = requests.get(URL, headers=headers)
file_name = URL.split('/')[-1].split('?')[0]
audio_path = f'{audio_dir}/{file_name}'
with open(audio_path, 'wb') as f:
f.write(doc.content)
return audio_path
credentials = os.environ['CREDENTIALS']
data = json.loads(credentials, strict=False)
with open('credentials.json', 'w') as f:
json.dump(data, f)
title = '🎵 Annotate audio'
description = '''Choose a sentence (or sentences) that describes audio the best.'''
audio_dir = 'AUDIO'
os.makedirs(audio_dir, exist_ok=True)
def sample_df():
gc = gspread.service_account(filename='credentials.json')
sh = gc.open('Annotated CC Audio')
worksheet = sh.sheet1
df = pd.DataFrame(worksheet.get_all_records())
sample_df = df[df['caption']==''].sample(1)
audio_url, audio_meta, page_title, img_metadata, sibling_elems = sample_df[['audio_url', 'audio_meta', 'page_title', 'imgs_metadata', 'sibling_elems']].values[0]
audio_path = download_and_save_file(audio_url, audio_dir)
sibling_elems = ast.literal_eval(sibling_elems)
sibling_elems = [s.replace('\n', '') for s in sibling_elems]
sibling_elems = ["\n".join(wrap(s)) for s in sibling_elems if len(s) > 0]
sibling_elems = list(set(sibling_elems))
img_metadata = ast.literal_eval(img_metadata)
if len(img_metadata) > 0:
img_metadata = [[f'{k}: {meta[k]}' for k in meta] for meta in img_metadata]
audio_meta = ast.literal_eval(audio_meta).get('tags', None)
if audio_meta:
audio_meta = [f'{k}: {audio_meta[k]}' for k in audio_meta.keys() if k.lower() in ['title', 'album', 'artist', 'genre', 'date', 'language']]
audio_meta = '; '.join(audio_meta)
return audio_path, audio_url, sibling_elems, audio_meta, page_title, df, worksheet
def audio_demo(siblings, page_title, audio_meta, audio, annotator, audio_url):
annotator = annotator if annotator else str(uuid.uuid4())
siblings.extend(page_title)
siblings.extend(audio_meta)
siblings = [s for s in siblings if s!=[]]
cap = '\n'.join(siblings)
df['caption'].loc[df['audio_url'] == audio_url] = cap
df['annotator'].loc[df['audio_url'] == audio_url] = annotator
worksheet.update([df.columns.values.tolist()] + df.values.tolist())
return 'success!'
if __name__ == "__main__":
audio_path, audio_url, sibling_elems, audio_meta, page_title, df, worksheet = sample_df()
iface = gr.Interface(
audio_demo,
inputs=[
gr.CheckboxGroup(sibling_elems, label='sibling elements text'),
gr.CheckboxGroup(label='page title', choices=[page_title]),
gr.CheckboxGroup([audio_meta], label='audio metadata'),
gr.Audio(audio_path, type="filepath", interactive=False),
gr.Textbox(label='please enter your name'),
gr.Textbox(value=audio_url, visible=False)
],
outputs=[gr.Textbox(label="output")],
allow_flagging="never",
title=title,
description=description,
)
iface.launch(show_error=True, debug=True) |