import gradio as gr import json import re import string import pandas as pd import os import requests from textwrap import wrap import uuid import gspread import ast def download_and_save_file(URL, audio_dir): headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'referer': 'https://www.google.com/', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'en-US,en;q=0.9,', 'cookie': 'prov=6bb44cc9-dfe4-1b95-a65d-5250b3b4c9fb; _ga=GA1.2.1363624981.1550767314; __qca=P0-1074700243-1550767314392; notice-ctt=4%3B1550784035760; _gid=GA1.2.1415061800.1552935051; acct=t=4CnQ70qSwPMzOe6jigQlAR28TSW%2fMxzx&s=32zlYt1%2b3TBwWVaCHxH%2bl5aDhLjmq4Xr', } doc = requests.get(URL, headers=headers) file_name = URL.split('/')[-1].split('?')[0] audio_path = f'{audio_dir}/{file_name}' with open(audio_path, 'wb') as f: f.write(doc.content) return audio_path credentials = os.environ['CREDENTIALS'] data = json.loads(credentials, strict=False) with open('credentials.json', 'w') as f: json.dump(data, f) title = '🎵 Annotate audio' description = '''Choose a sentence (or sentences) that describes audio the best.''' audio_dir = 'AUDIO' os.makedirs(audio_dir, exist_ok=True) def sample_df(): gc = gspread.service_account(filename='credentials.json') sh = gc.open('Annotated CC Audio') worksheet = sh.sheet1 df = pd.DataFrame(worksheet.get_all_records()) sample_df = df[df['caption']==''].sample(1) audio_url, audio_meta, page_title, img_metadata, sibling_elems = sample_df[['audio_url', 'audio_meta', 'page_title', 'imgs_metadata', 'sibling_elems']].values[0] audio_path = download_and_save_file(audio_url, audio_dir) sibling_elems = ast.literal_eval(sibling_elems) sibling_elems = [s.replace('\n', '') for s in sibling_elems] sibling_elems = ["\n".join(wrap(s)) for s in sibling_elems if len(s) > 0] sibling_elems = list(set(sibling_elems)) img_metadata = ast.literal_eval(img_metadata) if len(img_metadata) > 0: img_metadata = [[f'{k}: {meta[k]}' for k in meta] for meta in img_metadata] audio_meta = ast.literal_eval(audio_meta).get('tags', None) if audio_meta: audio_meta = [f'{k}: {audio_meta[k]}' for k in audio_meta.keys() if k.lower() in ['title', 'album', 'artist', 'genre', 'date', 'language']] audio_meta = '; '.join(audio_meta) return audio_path, audio_url, sibling_elems, audio_meta, page_title, df, worksheet def audio_demo(siblings, page_title, audio_meta, audio, annotator, audio_url): annotator = annotator if annotator else str(uuid.uuid4()) siblings.extend(page_title) siblings.extend(audio_meta) siblings = [s for s in siblings if s!=[]] cap = '\n'.join(siblings) df['caption'].loc[df['audio_url'] == audio_url] = cap df['annotator'].loc[df['audio_url'] == audio_url] = annotator worksheet.update([df.columns.values.tolist()] + df.values.tolist()) return 'success!' if __name__ == "__main__": audio_path, audio_url, sibling_elems, audio_meta, page_title, df, worksheet = sample_df() iface = gr.Interface( audio_demo, inputs=[ gr.CheckboxGroup(sibling_elems, label='sibling elements text'), gr.CheckboxGroup(label='page title', choices=[page_title]), gr.CheckboxGroup([audio_meta], label='audio metadata'), gr.Audio(audio_path, type="filepath", interactive=False), gr.Textbox(label='please enter your name'), gr.Textbox(value=audio_url, visible=False) ], outputs=[gr.Textbox(label="output")], allow_flagging="never", title=title, description=description, ) iface.launch(show_error=True, debug=True)