marioferreyra's picture
Upload files
1907cce
raw
history blame
6.78 kB
import os
import pickle
import pandas as pd
import gradio as gr
EDVAI_URL = """\
https://www.escueladedatosvivos.ai/cursos/bootcamp-de-data-science
"""
FOOTER_HTML = f"""\
<p style='text-align: center'>
<a href='{EDVAI_URL}' target='_blank'>
Proyecto demo creado en el bootcamp de EDVAI 🤗
</a>
</p>
"""
# Define params names
PARAMS_NAME = [
"orderAmount",
"orderState",
"paymentMethodRegistrationFailure",
"paymentMethodType",
"paymentMethodProvider",
"paymentMethodIssuer",
"transactionFailed",
"emailDomain",
"emailProvider",
"customerIPAddressSimplified",
"sameCity",
]
THRESHOLD = 0.44
MAIN_FOLDER = os.path.dirname(__file__)
# Model
model_filepath = "data/modelo_proyecto_final.pkl"
MODEL_PATH = os.path.join(MAIN_FOLDER, model_filepath)
with open(MODEL_PATH, "rb") as f:
model = pickle.load(f)
# Columnas
columns_filepath = "data/categories_ohe_without_fraudulent.pkl"
COLUMNS_PATH = os.path.join(MAIN_FOLDER, columns_filepath)
with open(COLUMNS_PATH, 'rb') as handle:
ohe_tr = pickle.load(handle)
# Bins - Order Amount
bins_order_filepath = "data/saved_bins_order_amount.pkl"
BINS_ORDER_PATH = os.path.join(MAIN_FOLDER, bins_order_filepath)
with open(BINS_ORDER_PATH, 'rb') as handle:
new_saved_bins_order = pickle.load(handle)
def predict_fraud_customer(*args):
request_dict = {
param_name: [param_value]
for param_name, param_value in zip(PARAMS_NAME, args)
}
# Generate pandas DataFrame
single_instance = pd.DataFrame.from_dict(request_dict)
# Manejar puntos de corte o bins
single_instance["orderAmount"] = single_instance["orderAmount"].astype(
float
)
single_instance["orderAmount"] = pd.cut(
single_instance['orderAmount'],
bins=new_saved_bins_order,
include_lowest=True,
)
# One hot encoding
single_instance_ohe = pd.get_dummies(single_instance)
single_instance_ohe = single_instance_ohe.reindex(columns=ohe_tr).fillna(0)
# Prediction
# prediction = model.predict(single_instance_ohe)
# score = int(prediction[0])
# return {"score": score}
prediction_proba = model.predict_proba(single_instance_ohe)
# Apply threshold
is_fraudulent = True if prediction_proba[:, 1] >= THRESHOLD else False
return is_fraudulent
with gr.Blocks() as demo:
gr.Markdown(
"""
# Prevención de Fraude 🕵️‍♀️ 🕵️‍♂️
"""
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
## Predecir si un cliente es fraudulento o no.
"""
)
order_amount_slider = gr.Slider(
label="Order amount",
minimum=1,
maximum=100,
step=1,
randomize=True,
)
order_state_radio = gr.Radio(
label="Order state",
choices=["failed", "fulfilled", "pending"],
value="failed",
)
payment_method_registration_failure_radio = gr.Radio(
label="Payment method registration failure",
choices=["True", "False"],
value="True",
)
payment_method_type_radio = gr.Radio(
label="Payment method type",
choices=["apple pay", "bitcoin", "card", "paypal"],
value="bitcoin",
)
payment_method_provider_dropdown = gr.Dropdown(
label="Payment method Provider",
choices=[
"American Express",
"Diners Club / Carte Blanche",
"Discover",
"JCB 15 digit",
"JCB 16 digit",
"Maestro",
"Mastercard",
"VISA 13 digit",
"VISA 16 digit",
"Voyager",
],
multiselect=False,
value='American Express',
)
payment_method_issuer_dropdown = gr.Dropdown(
label="Payment method issuer",
choices=[
"Bastion Banks",
"Bulwark Trust Corp.",
"Citizens First Banks",
"Fountain Financial Inc.",
"Grand Credit Corporation",
"Her Majesty Trust",
"His Majesty Bank Corp.",
"Rose Bancshares",
"Solace Banks",
"Vertex Bancorp",
"weird",
],
multiselect=False,
value='Bastion Banks',
)
transaction_failed_radio = gr.Radio(
label="Transaction failed",
choices=["True", "False"],
value="False",
)
email_domain_radio = gr.Radio(
label="Email domain",
choices=["biz", "com", "info", "net", "org", "weird"],
value="com",
)
email_provider_radio = gr.Radio(
label="Email provider",
choices=["gmail", "hotmail", "yahoo", "weird", "other"],
value="gmail",
)
customer_ip_address_radio = gr.Radio(
label="Customer IP Address",
choices=["digits_and_letters", "only_letters"],
value="digits_and_letters",
)
same_city_radio = gr.Radio(
label="Same city",
choices=["no", "yes", "unknown"],
value="unknown",
)
with gr.Column():
gr.Markdown(
"""
## Predicción
"""
)
label = gr.Label(label="Es Fraude?")
predict_btn = gr.Button(value="Evaluar")
predict_btn.click(
predict_fraud_customer,
inputs=[
order_amount_slider,
order_state_radio,
payment_method_registration_failure_radio,
payment_method_type_radio,
payment_method_provider_dropdown,
payment_method_issuer_dropdown,
transaction_failed_radio,
email_domain_radio,
email_provider_radio,
customer_ip_address_radio,
same_city_radio,
],
outputs=[label],
)
gr.Markdown(FOOTER_HTML)
def main():
demo.launch()
if __name__ == "__main__":
main()