marlenezw's picture
changing face alignment and removing its docker file.
22257c4
raw
history blame
10.6 kB
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %%
import torch
# this ensures that the current MacOS version is at least 12.3+
print(torch.backends.mps.is_available())
# this ensures that the current current PyTorch installation was built with MPS activated.
print(torch.backends.mps.is_built())
# %%
import ipywidgets as widgets
import glob
import matplotlib.pyplot as plt
print("Choose the image name to animate: (saved in folder 'MakeItTalk/examples/')")
img_list = glob.glob1('examples', '*.jpg')
img_list.sort()
img_list = [item.split('.')[0] for item in img_list]
default_head_name = widgets.Dropdown(options=img_list, value='marlene_v2')
def on_change(change):
if change['type'] == 'change' and change['name'] == 'value':
plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))
plt.axis('off')
plt.show()
default_head_name.observe(on_change)
display(default_head_name)
plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))
plt.axis('off')
plt.show()
# %%
#@markdown # Animation Controllers
#@markdown Amplify the lip motion in horizontal direction
AMP_LIP_SHAPE_X = 2 #@param {type:"slider", min:0.5, max:5.0, step:0.1}
#@markdown Amplify the lip motion in vertical direction
AMP_LIP_SHAPE_Y = 2 #@param {type:"slider", min:0.5, max:5.0, step:0.1}
#@markdown Amplify the head pose motion (usually smaller than 1.0, put it to 0. for a static head pose)
AMP_HEAD_POSE_MOTION = 0.35 #@param {type:"slider", min:0.0, max:1.0, step:0.05}
#@markdown Add naive eye blink
ADD_NAIVE_EYE = True #@param ["False", "True"] {type:"raw"}
#@markdown If your image has an opened mouth, put this as True, else False
CLOSE_INPUT_FACE_MOUTH = True #@param ["False", "True"] {type:"raw"}
#@markdown # Landmark Adjustment
#@markdown Adjust upper lip thickness (postive value means thicker)
UPPER_LIP_ADJUST = -1 #@param {type:"slider", min:-3.0, max:3.0, step:1.0}
#@markdown Adjust lower lip thickness (postive value means thicker)
LOWER_LIP_ADJUST = -1 #@param {type:"slider", min:-3.0, max:3.0, step:1.0}
#@markdown Adjust static lip width (in multipication)
LIP_WIDTH_ADJUST = 1.0 #@param {type:"slider", min:0.8, max:1.2, step:0.01}
# %%
import sys
sys.path.append("thirdparty/AdaptiveWingLoss")
import os, glob
import numpy as np
import cv2
import argparse
from src.approaches.train_image_translation import Image_translation_block
import torch
import pickle
import face_alignment
from face_alignment import face_alignment
from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor
import shutil
import time
import util.utils as util
from scipy.signal import savgol_filter
from src.approaches.train_audio2landmark import Audio2landmark_model
# %%
sys.stdout = open(os.devnull, 'a')
parser = argparse.ArgumentParser()
parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name.value))
parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true')
parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth')
parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth')
parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth')
parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c
parser.add_argument('--amp_lip_x', type=float, default=AMP_LIP_SHAPE_X)
parser.add_argument('--amp_lip_y', type=float, default=AMP_LIP_SHAPE_Y)
parser.add_argument('--amp_pos', type=float, default=AMP_HEAD_POSE_MOTION)
parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8',
parser.add_argument('--add_audio_in', default=False, action='store_true')
parser.add_argument('--comb_fan_awing', default=False, action='store_true')
parser.add_argument('--output_folder', type=str, default='examples')
parser.add_argument('--test_end2end', default=True, action='store_true')
parser.add_argument('--dump_dir', type=str, default='', help='')
parser.add_argument('--pos_dim', default=7, type=int)
parser.add_argument('--use_prior_net', default=True, action='store_true')
parser.add_argument('--transformer_d_model', default=32, type=int)
parser.add_argument('--transformer_N', default=2, type=int)
parser.add_argument('--transformer_heads', default=2, type=int)
parser.add_argument('--spk_emb_enc_size', default=16, type=int)
parser.add_argument('--init_content_encoder', type=str, default='')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')
parser.add_argument('--write', default=False, action='store_true')
parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size')
parser.add_argument('--emb_coef', default=3.0, type=float)
parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)
parser.add_argument('--use_11spk_only', default=False, action='store_true')
parser.add_argument('-f')
opt_parser = parser.parse_args()
# %%
img = cv2.imread('MakeItTalk/examples/' + opt_parser.jpg)
plt.imshow(img)
# %%
predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='mps', flip_input=True)
shapes = predictor.get_landmarks(img)
if (not shapes or len(shapes) != 1):
print('Cannot detect face landmarks. Exit.')
exit(-1)
shape_3d = shapes[0]
# %%
if(opt_parser.close_input_face_mouth):
util.close_input_face_mouth(shape_3d)
shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * LIP_WIDTH_ADJUST + np.mean(shape_3d[48:, 0]) # wider lips
shape_3d[49:54, 1] -= UPPER_LIP_ADJUST # thinner upper lip
shape_3d[55:60, 1] += LOWER_LIP_ADJUST # thinner lower lip
shape_3d[[37,38,43,44], 1] -=2. # larger eyes
shape_3d[[40,41,46,47], 1] +=2. # larger eyes
shape_3d, scale, shift = util.norm_input_face(shape_3d)
print("Loaded Image...", file=sys.stderr)
# %%
au_data = []
au_emb = []
ains = glob.glob1('examples', '*.wav')
ains = [item for item in ains if item != 'tmp.wav']
ains.sort()
for ain in ains:
os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain))
shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain))
# au embedding
from thirdparty.resemblyer_util.speaker_emb import get_spk_emb
me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain))
au_emb.append(me.reshape(-1))
print('Processing audio file', ain)
c = AutoVC_mel_Convertor('examples')
au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain),
autovc_model_path=opt_parser.load_AUTOVC_name)
au_data += au_data_i
if(os.path.isfile('MakeItTalk/examples/tmp.wav')):
os.remove('MakeItTalk/examples/tmp.wav')
print("Loaded audio...", file=sys.stderr)
# %%
# landmark fake placeholder
fl_data = []
rot_tran, rot_quat, anchor_t_shape = [], [], []
for au, info in au_data:
au_length = au.shape[0]
fl = np.zeros(shape=(au_length, 68 * 3))
fl_data.append((fl, info))
rot_tran.append(np.zeros(shape=(au_length, 3, 4)))
rot_quat.append(np.zeros(shape=(au_length, 4)))
anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3)))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle'))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle'))
if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))
with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp:
pickle.dump(fl_data, fp)
with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp:
pickle.dump(au_data, fp)
with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp:
gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape}
pickle.dump(gaze, fp)
# %%
model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d)
if(len(opt_parser.reuse_train_emb_list) == 0):
model.test(au_emb=au_emb)
else:
model.test(au_emb=None)
print("Audio->Landmark...", file=sys.stderr)
# %%
fls = glob.glob1('examples', 'pred_fls_*.txt')
fls.sort()
for i in range(0,len(fls)):
fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3))
print(fls[i])
fl[:, :, 0:2] = -fl[:, :, 0:2]
fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift
if (ADD_NAIVE_EYE):
fl = util.add_naive_eye(fl)
# additional smooth
fl = fl.reshape((-1, 204))
fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0)
fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0)
fl = fl.reshape((-1, 68, 3))
''' STEP 6: Imag2image translation '''
model = Image_translation_block(opt_parser, single_test=True)
with torch.no_grad():
model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0])
print('finish image2image gen')
os.remove(os.path.join('examples', fls[i]))
print("{} / {}: Landmark->Face...".format(i+1, len(fls)), file=sys.stderr)
print("Done!", file=sys.stderr)
# %% [markdown]
# # Generated video from image and sound clip
# %%
from IPython.display import Video
Video("MakeItTalk/examples/marlenes_v1.mp4")
# %%
# %%
from IPython.display import HTML
from base64 import b64encode
for ain in ains:
OUTPUT_MP4_NAME = '{}_pred_fls_{}_audio_embed.mp4'.format(
opt_parser.jpg.split('.')[0],
ain.split('.')[0]
)
mp4 = open('MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME),'rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
print('Display animation: MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME), file=sys.stderr)
display(HTML("""
<video width=600 controls>
<source src="%s" type="video/mp4">
</video>
""" % data_url))